Abstract:
The present invention provides an isolated myeloid-like bone marrow cell population comprising a majority of cells that are lineage negative, and which express both CD44 antigen and CD11b antigen. These cells have beneficial vasculotrophic and neurotrophic activity when intraocularly administered to the eye of a mammal, particularly a mammal suffering from an ocular degenerative disease. The myeloid-like bone marrow cells are isolated by treating bone marrow cells with an antibody against CD44 (hyaluronic acid receptor), against CD11b, or against both and using flow cytometry to positively select CD44 and/or CD11b expressing cells therefrom. The isolated myeloid-like bone marrow cells of the invention can be transfected with a gene encoding a therapeutically useful protein, for delivering the gene to the retina.
Abstract:
The present invention provides an isolated myeloid-like cell population comprising a majority of cells that are lineage negative, and which express both CD44 antigen, CD11b antigen, and hypoxia inducible factor 1 α (HIF-1 α). These cells have beneficial vasculotrophic and neurotrophic activity when intraocularly administered to the eye of a mammal, particularly a mammal suffering from an ocular degenerative disease. The myeloid-like cells are isolated by treating bone marrow cells, peripheral blood cells or umbilical cord cells with an antibody against CD44 (hyaluronic acid receptor), against CD11b, CD14, CD33, or against a combination thereof and using flow cytometry to positively select CD44 and/or CD11b expressing cells therefrom. The isolated myeloid-like bone marrow cells of the invention can be transfected with a gene encoding a therapeutically useful protein, for delivering the gene to the retina.
Abstract:
The invention provides methods of using isolated monocyte populations to treat subjects suffering from various ocular vascular disease or ocular degenerative disorders. The present invention also provides novel methods for isolating substantially pure monocyte populations. The methods involve extracting a blood sample or a bone marrow sample from a subject, debulking red blood cells from the sample, and then separating remaining red blood cells and other cell types in the sample from monocytes. Instead of using any selection or labeling agents, the red blood cells and other cell types are separated from monocytes based on their size, granularity or density. The isolated monocytes can be further activated in vitro or ex vivo prior to being administered to a subject. Isolated cell populations containing substantially pure CD14+/CD33+ monocytes are also provided in the invention.
Abstract:
The present invention provides a method of rebuilding and stabilizing functional vasculature in hypoxic retinal tissue comprising contacting the hypoxic retinal tissue with an effective amount of cells from an isolated myeloid-like cell population comprising a majority of cells that express CD44 antigen, CD11b antigen, and hypoxia inducible factor 1α (HIF-1α). The isolated myeloid-like bone marrow cells optionally can be transfected with a gene encoding a therapeutically useful peptide, for delivering the gene to the retina.
Abstract:
The present invention provides an isolated myeloid-like bone marrow cell population comprising a majority of cells that are lineage negative, and which express both CD44 antigen and CD11b antigen. These cells have beneficial vasculotrophic and neurotrophic activity when intraocularly administered to the eye of a mammal, particularly a mammal suffering from an ocular degenerative disease. The myeloid-like bone marrow cells are isolated by treating bone marrow cells with an antibody against CD44 (hyaluronic acid receptor), against CD11b, or against both and using flow cytometry to positively select CD44 and/or CD11b expressing cells therefrom. The isolated myeloid-like bone marrow cells of the invention can be transfected with a gene encoding a therapeutically useful protein, for delivering the gene to the retina.