Abstract:
The present disclosure relates to a thermal cracking resistant zeolite membrane and a method of fabricating the same. The method includes dissolving an alumina-based material, a silica-based material and sodium hydroxide in water to prepare an aqueous solution, stirring the aqueous solution to form a hydrothermal solution, preparing a slurry of zeolite seeds through wet-type vibration pulverization and centrifugal separation of zeolite powder, passing the zeolite seeds through a support by vacuum filtration such that the zeolite seeds can be infiltrated into an inner region of the support ranging from a depth of 3 μm to a depth corresponding to 50% of a total thickness of the support, and immersing the support into the hydrothermal solution for hydrothermal treatment to grow a dense zeolite separation layer not only on the surface of the support but also on the inner region thereof. The zeolite membrane prevents the occurrence of thermal cracking on the zeolite separation layer, thereby providing good thermal stability and separation performance during heating and at a target processing temperature.
Abstract:
There are disclosed foot measurement systems and methods to scan someone's foot from the bottom and/or oblique topside directions for generating pixel data for the foot shape, and then to calculate and obtain main foot-dimensions and other information required for last design (for example, shoes design) using the generated pixel data. The foot measurement system comprises foot data generating means for generating pixel data for foot shape and transmitting them to the exterior, the pixel data being obtained by emitting light to a foot placed on a substrate and analyzing information of the reflected light; and image treatment means for generating foot image through analyzing the pixel data transmitted from the foot data generating means with line-scan algorithm and/or stereo vision algorithm.