Abstract:
There is provided a planar inductive battery charging system designed to enable electronic devices to be recharged. The system includes a planar charging module having a charging surface on which a device to be recharged is placed. Within the charging module and substantially parallel to the charging surface are multiple primary windings formed in a multi-layer structure that couple energy inductively to a secondary winding formed in the device to be recharged. A winding of a first layer is offset relative to a winding of a second layer. The invention also provides secondary modules that allow the system to be used with conventional electronic devices not formed with secondary windings.
Abstract:
The present invention provides a power transfer device for charging a wireless communication device having a communication bandwidth, and an associated method of transferring power. The device and method of the invention use a spread-spectrum technique to reduce or minimize interference signals within the communication bandwidth and within the power transfer device.
Abstract:
There is provided a planar inductive battery charging system designed to enable electronic devices to be recharged. The system includes a planar charging module having a charging surface on which a device to be recharged is placed. Within the charging module and parallel to the charging surface is at least one and preferably an array of primary windings that couple energy inductively to a secondary winding formed in the device to be recharged. The invention also provides secondary modules that allow the system to be used with conventional electronic devices not formed with secondary windings.
Abstract:
A planar transformer structure, which can be constructed in an integrated semiconductor circuit without using traditional metallic windings. To avoid large thermal expansion of metallic spiral windings and associated mechanical stress on a metal-semiconductor interface, it is suggested that highly doped semiconductor materials with or without silicides and salicides can be used to form windings or conducting paths because their thermal expansion coefficients are similar to that of semiconductor material. The planar semiconductor transformer may find application for low-power and signal transfer that needs electrical isolation.
Abstract:
Systems, methods, and devices that employ self-driven gate-drive circuitry to facilitate controlling power switches to emulate a diode bridge to synchronously rectify a power signal are presented. A single-phase or multi-phase synchronous rectifier can comprise at least a first pair of switches of a first conducting path and a second pair of switches of a second conducting path that can form or emulate a diode bridge. To facilitate emulating turn-on and turn-off conditions of a diode, a switch can be turned on when voltage across the switch is forward-biased and turned off when switch current is reversed; also, there can be at least one current-controlled switch in each conducting path. Self-driven gate-drive circuitry employs low power components that can facilitate controlling respective switching of the at least first pair and second pair of switches, wherein switching of the switches is also controlled at start-up to emulate a diode bridge.
Abstract:
Optimal operating techniques are disclosed for using coreless printed-circuit-board (PCB) transformers under (1) minimum input power conditions and (2) maximum energy efficiency conditions. The coreless PCB transformers should be operated at or near the ‘maximum impedance frequency’ (MIF) in order to reduce input power requirement. For maximum energy efficiency, the transformers should be at or near the “maximum efficiency frequency” (MEF) which is below the MIF. The operating principle has been confirmed by measurement and simulation. The proposed operating techniques can be applied to coreless PCB transformers in many circuits that have to meet stringent height requirements, for example to isolate the gates of power MOSFET and IGBT devices from the input power supply.
Abstract:
A planar transformer structure, which can be constructed in an integrated semiconductor circuit without using traditional metallic windings. To avoid large thermal expansion of metallic spiral windings and associated mechanical stress on a metal-semiconductor interface, it is suggested that highly doped semiconductor materials with or without silicides and salicides can be used to form windings or conducting paths because their thermal expansion coefficients are similar to that of semiconductor material. The planar semiconductor transformer may find application for low-power and signal transfer that needs electrical isolation.
Abstract:
A battery charging apparatus comprises an inductive charging platform including a charging surface on which an electrical device to be charged is to be placed, and a first winding for generating lines of magnetic flux generally perpendicular to the charging surface. To compensate for voltage sag caused by a reduction in the flux generated by the first winding, a second winding is located within an area defined by the first winding for generating an auxiliary magnetic flux generally perpendicular to the charging surface.
Abstract:
There is provided a planar inductive battery charging system designed to enable electronic devices to be recharged. The system includes a planar charging module having a charging surface on which a device to be recharged is placed. Within the charging module and parallel to the charging surface is at least one and preferably an array of primary windings that couple energy inductively to a secondary winding formed in the device to be recharged. The invention also provides secondary modules that allow the system to be used with conventional electronic devices not formed with secondary windings.
Abstract:
This invention relates to new soft-switching techniques for minimizing switching losses and stress in power electronic circuits using inverter legs. By choosing the switching frequency with specific relationships with the resonant frequency of the power electronic circuits, the proposed switching technique enables the power electronic circuits to achieve soft switching under full load and short-circuit conditions at the defined frequencies for both capacitive and inductive loads. This technique can be applied to an electronic circuit with two switches connected in totem pole configuration between two dc voltage rails or commonly known as a power inverter leg or inverter arm. Examples of these circuits are class-D power converter, half-bridge power converters and full-bridge power converters or inverters. The proposed techniques allow inverter circuits with resistive, capacitive and inductive loads to achieve soft switching.