Abstract:
A memory cell includes a floating gate electrode, a first inter-electrode insulating film and a control gate electrode. A peripheral transistor includes a lower electrode, a second inter-electrode insulating film and an upper electrode. The lower electrode and the upper electrode are electrically connected via an opening provided on the second inter-electrode insulating film. The first and second inter-electrode insulating films include a high-permittivity material, the first inter-electrode insulating film has a first structure, and the second inter-electrode insulating film has a second structure different from the first structure.
Abstract:
A nonvolatile semiconductor memory according to an example of the present invention includes first and second diffusion layers, a channel formed between the first and second diffusion layers, a gate insulating film formed on the channel, a floating gate electrode formed on the gate insulating film, an inter-gate insulating film formed on the floating gate electrode, and a control gate electrode formed on the inter-gate insulating film. An end portion of the inter-gate insulating film in a direction of channel length is on an inward side of a side surface of the floating gate electrode or a side surface of the control gate electrode.
Abstract:
A duplex heat exchanger of the so-called stacked type has in principle a plurality of plate-shaped tubular elements (1) which are stacked side by side or one on another and a plurality of fins (2) each intervening between the adjacent tubular elements. Each tubular element is composed of flat tubular segments (3a, 4a) separated from each other and each communicating with one of bulged header portions (3b, 4b) of the tubular element, so that flow paths (3, 4) for heat exchanging media are formed through each tubular element. Two or more unit heat exchangers (X, Y) are defined integral with each other within the duplex heat exchanger, since the adjacent tubular elements (1) communicate with each other through the header portions (3b, 4b).
Abstract:
A ribbon protector is used for protecting paper from contamination by an ink ribbon in a printer, where the protector is inserted between paper located between a platen and a printing head. The printing head facing the platen performs spacing movement for printing. Two connected plate-like elements are provided with through openings for passage of the pin of the printing head. Mutually engageable electroconductive elements are provided on the inner walls of the two plate-like elements, at least in the area where they are compressed by the tip of the printing head, and spacers which are made from resilient materials are located between the two plate-like elements.
Abstract:
In one implementation a display apparatus, a display area of a display screen of a display panel is defined by edge portions of a first window formed in a first frame body. The first frame body is formed from a thin synthetic resin sheet and has upper airflow passages and side airflow passages formed therein. An outer communication portion of each of the upper airflow passages and an outer communication portion of each of the side airflow passages are exposed inside holes formed in a second frame body disposed in front of the first frame body. An inner communication portion of the upper airflow passage and an inner communication portion of the side airflow passage are exposed inside the edge portions of a second window of the second frame body. A space formed between the display panel and a cover plate communicates with the outer space via the upper airflow passages and the side airflow passages.
Abstract:
A method of controlling the criticality of a nuclear fuel cycle facility includes steps of producing a reactor fuel by adding less than 0.1% by weight of gadolinia to a uranium dioxide powder with a uranium enrichment of greater than 5% by weight and controlling the effective neutron multiplication factor of a uranium dioxide system in a step of handling the reactor fuel to be less than or equal to the maximum of the effective neutron multiplication factor of a uranium dioxide system with a uranium enrichment of 5% by weight.
Abstract:
A nonvolatile semiconductor memory according to an example of the present invention includes first and second diffusion layers, a channel formed between the first and second diffusion layers, a gate insulating film formed on the channel, a floating gate electrode formed on the gate insulating film, an inter-gate insulating film formed on the floating gate electrode, and a control gate electrode formed on the inter-gate insulating film. An end portion of the inter-gate insulating film in a direction of channel length is on an inward side of a side surface of the floating gate electrode or a side surface of the control gate electrode.
Abstract:
The present invention provides a molding sheet material having a sandwich structure produced by preparing a fiber reinforced thermoplastic resin layer (A) reinforced with a woven fabric or a knitted web and a fiber reinforced thermoplastic resin layer (B) reinforced with a random mat and using the layer (A) as a core layer and the layer (B) as a skin layer, or using the layer (B) as a core layer and the layer (A) as a skin layer. When this sheet material is molded into a three-dimensional structure, the layer (B) serves as a cushion to prevent the occurrence of a wrinkle or a crease in the layer (A). A toe puff for a safety shoe having a light weight and excellent pressing resistance can be prepared through the molding of this sheet material. In the sheet materials, the core layer or the skin layer consisting of a fiber reinforced thermoplastic resin reinforced with a woven fabric or a knitted web of a reinforcing fiber may be prepared from a woven fabric or a knitted web of a reinforcing fiber alone.
Abstract:
A fabric for a fiber-reinforced thermoplastic composite material is disclosed, which comprises the warp and the weft wherein the warp comprises reinforcing fiber and the weft comprises high molecular weight grade polyether ether ketone resin yarns and low molecular weight grade polyether ether ketone resin yarns, or wherein the warp comprises reinforcing fiber and at least one of high molecular weight grade polyether ether ketone resin yarns and low molecular weight grade polyether ether ketone resin yarns and the weft comprises reinforcing fiber and at least one of high molecular weight grade polyether ether ketone resin yarns and low molecular weight grade polyethe ether ketone resin yarns. The fabric can be laminated or molded into a product having an excellent toughness and shock resistance in almost the same heating time as the conventional one.
Abstract:
A method is provided for manufacturing a master slice semiconductor integrated circuit device. Initially, a first total circuit diagram which is to be reformed into a master slice semiconductor integrated circuit device is defined. First and second circuit points on the first total circuit block which are to be used respectively as input and output terminals of the master slice semiconductor integrated circuit device are specified. Next, signal transmitting paths are successively traced from the output to the input of each logic gate located in the signal transmitting paths in actual use. In the course of the tracing, these traced gates are marked and the logic gates actually in use are identified. As a result, in addition to those logic gates having unused output terminals, the gates constituting a closed loop isolated from the signal transmitting paths for transmitting substantial output signals are identified as unnecessary gates and deleted. Further, gates outputting only a fixed value are determined and designated unnecessary gates which are also deleted.