Abstract:
An interleave address generation circuit includes a plurality of linear feedback shift registers operable to generate addresses for permuting a data block in a first domain to a data block in a second domain on a subword basis. The interleave address generation circuit is operable to generate the lane addresses for each subword and the linear feedback registers configured to generate circulant addresses and sub-circulant address to map bits in each subword in the data block in the first domain to a corresponding subword in the second domain.
Abstract:
An interleave address generation circuit includes a plurality of linear feedback shift registers operable to generate addresses for permuting a data block in a first domain to a data block in a second domain on a subword basis. The interleave address generation circuit is operable to generate the lane addresses for each subword and the linear feedback registers configured to generate circulant addresses and sub-circulant address to map bits in each subword in the data block in the first domain to a corresponding subword in the second domain.
Abstract:
A method of generating a Tanner graph includes generating a pseudo-random parameter and selecting a subgraph within the Tanner graph to be designed, and assigning new edges to the subgraph as a function of the value of the pseudo-random parameter and as a function of prior edges, if any, that have been assigned to the subgraph. The method detects whether the subgraph contains a common feature indicative of a trapping set or sets to be avoided during generation of the Tanner graph until either the common feature is not detected or all possible combination of edges have been assigned to the subgraph. The subgraph containing no occurrences of the common feature is included as part of the Tanner graph or one of combinations is selected as the subgraph and is included as part of the Tanner graph. These operations are repeated until the entire Tanner graph is generated.