Title translation:SMICONDUCTOR DEVICE,METHOD FOR FABRICATING THEREOF METHOD AND METHOD FOR FABRICATING THEWORKING METHOD AND METHOD FOR FABRICATING ANDERIFY AND METHOD FOR INCREASING FILM STRESS
Abstract:
A method for forming a semiconductor device is provided. The method comprises steps of providing a substrate having a first-conductive-type transistor and a second-conductive-type transistor formed thereon and then forming a stress layer over the substrate to conformally cover the first-conductive-type transistor and the second-conductive-type transistor. A cap layer is formed on the stress layer over the first-conductive-type transistor. A modification process is performed. The cap layer is removed.
Abstract:
An MIM structure and method for forming the same the method including forming a bottom conductive electrode overlying a semiconducting substrate; forming a first protection layer on the conductive electrode; forming a dielectric layer on the first protection layer; and, forming an upper conductive electrode on the dielectric layer to form a metal-insulator-metal (MIM) structure.
Abstract:
A semiconductor interconnect structure including a semiconductor substrate, a semiconductor active device formed in the substrate, a layer of low-k dielectric material, a first patterned conducting layer, a second patterned conducting layer, and a cap layer formed thereon. The low-k material layer is formed over the semiconductor device. The first conducting line is formed in the low-k material layer and connected to the semiconductor active device. The second conducting line is formed in the low-k material layer but not electrically connected to the semiconductor active device. The cap layer is formed over the low-k material layer, the first and second conducting lines. The cap layer includes silicon and carbon. Since the adhesion strength between the cap layer and the patterned conducting layer is greater than the adhesion strength between the cap layer and the low-k material layer, the addition of second patterned conducting layer would eliminate the overall possibility of delamination between the surface where cap layer is in contact with the low-k material and the first and the second patterned conducting layers.
Abstract:
A method for filling silicon oxide materials into a trench includes providing a substrate having a plurality of trenches, performing a first deposition process to form a first silicon oxide layer in the trenches, and performing a second deposition process to form a second silicon oxide layer in the trenches. The reactant gas of the first deposition process has a first O3/TEOS flow ratio larger than a second O3/TEOS flow ratio of the reactant gas of the second deposition process.
Abstract:
A method of manufacturing a MOS transistor device. First, a semiconductor substrate having a gate structure is prepared. The gate structure has two sidewalls and a liner on the sidewalls. Subsequently, a stressed cap layer is formed on the semiconductor substrate, and covers the gate structure and the liner. Next, an activating process is performed. Furthermore, the stressed cap layer is etched to be a salicide block. Afterward, a salicide process is performed to form a silicide layer on the regions that are not covered by the stressed cap layer.
Abstract:
A method for forming a semiconductor device is provided. The method comprises steps of providing a substrate having a first-conductive-type transistor and a second-conductive-type transistor formed thereon and then forming a stress layer over the substrate to conformally cover the first-conductive-type transistor and the second-conductive-type transistor. A cap layer is formed on the stress layer over the first-conductive-type transistor. A modification process is performed. The cap layer is removed.
Abstract:
A seamless trench fill method utilizing ozone-assisted sub-atmospheric pressure chemical vapor deposition (SACVD) technique is provided. After the deposition of a SACVD silicon oxide film, the substrate is subjected to a steam anneal that is performed under H2O2 environment at a relatively lower temperature ranging between 500° C. and 800° C. for a time period of no less than 30 minutes. The seam defect in the trench is effectively eliminated by this low-temperature steam anneal. To densify the SACVD silicon oxide film, a subsequent N2 anneal is carried out at a higher temperature, for example, 1050° C.
Abstract translation:提供了利用臭氧辅助亚大气压化学气相沉积(SACVD)技术的无缝沟槽填充方法。 在沉积SACVD氧化硅膜之后,将衬底经受在H 2 O 2 O 2环境下进行的蒸汽退火,温度在500° C.和800℃,时间不少于30分钟。 通过这种低温蒸汽退火有效地消除了沟槽中的接缝缺陷。 为了致密化SACVD氧化硅膜,随后的N 2 H 3退火在更高的温度例如1050℃下进行。
Abstract:
A capacitor array includes a plurality of capacitors and a support frame. Each capacitor includes an electrode. The support frame supports the plurality of electrodes and includes a plurality of support structures corresponding to the plurality of electrodes. Each support structure may surround the respective electrode. The support frame may include oxide of a doped oxidizable material.
Abstract:
A method for filling silicon nitride materials into a trench includes providing a substrate having a plurality of trenches, performing a first deposition process to form a first silicon nitride layer in the trenches, and performing a second deposition process to form a second silicon nitride layer in the trenches. The reactant gas of the first deposition process has a first O3/TEOS flow ratio larger than a second O3/TEOS flow ratio of the reactant gas of the second deposition process.
Abstract:
A method of manufacturing a MOS transistor device. First, a semiconductor substrate having a gate structure is prepared. The gate structure has two sidewalls and a liner on the sidewalls. Subsequently, a stressed cap layer is formed on the semiconductor substrate, and covers the gate structure and the liner. Next, an activating process is performed. Furthermore, the stressed cap layer is etched to be a salicide block. Afterward, a salicide process is performed to form a silicide layer on the regions that are not covered by the stressed cap layer.