Abstract:
In a method of controlling an electronic device using a wearable device, the electronic device is paired with the wearable device. A cryptographic key, which corresponds to the electronic device, is stored in a secure storage device included in the wearable device. A distance between the wearable device and the electronic device is estimated by the wearable device. An unlock signal including the cryptographic key, which is stored in the secure storage device, is transmitted from the wearable device to the electronic device when the estimated distance is smaller than a threshold distance. The electronic device is unlocked based on the unlock signal.
Abstract:
A method for communicating medical data includes forming a secure channel between a first medical device and a second medical device connected to each other through a network on the basis of first authentication information of the first medical device and second authentication information of the second medical device; encrypting medical data that is obtained by the first medical device using a secure circuit that is provided in the first medical device; and transmitting the encrypted medical data to the second medical device through the secure channel.
Abstract:
In a method of controlling an electronic device using a wearable device, the electronic device is paired with the wearable device. A cryptographic key, which corresponds to the electronic device, is stored in a secure storage device included in the wearable device. A distance between the wearable device and the electronic device is estimated by the wearable device. An unlock signal including the cryptographic key, which is stored in the secure storage device, is transmitted from the wearable device to the electronic device when the estimated distance is smaller than a threshold distance. The electronic device is unlocked based on the unlock signal.
Abstract:
A printing apparatus includes: a flow channel plate including, a pressure chamber, a nozzle including an outlet through which ink contained in the pressure chamber is ejected, and a trench disposed around the nozzle, and the outlet extending into the trench; a piezoelectric actuator configured to provide a change in pressure to eject the ink contained in the pressure chamber; and an electrostatic actuator configured to provide an electrostatic driving force to the ink contained in the nozzle.
Abstract:
A method to enlarge and change an image displayed by a photographing apparatus, and a photographing apparatus using the same. The enlargement method includes adding guide information regarding a zoom-in area and compensating the guide information based on the zoom-in command.
Abstract:
The present invention relates to an automatic shoe cleaning device, which includes: a housing having a shoe inlet through which a foot with a shoe is inserted and a foot plate where the shoe is placed; a base frame disposed linearly movably inside the housing; a first brush assembly having a pair of side brushes polishing both sides of the shoe at both sides ahead of the base frame and a first spring supplying elastic force to the side brushes; and a second brush assembly having an upper brush polishing the top of the shoe behind the first brush assembly and a second spring supplying elastic force to the upper brush; and a shoe polish supply unit supplying shoe polish to the upper brush, in which as the upper brush moves backward and contacts the pair of side brushes, the shoe polish supplied to the upper brush is transferred to the pair of side brushes, whereas as the upper brush move forward to polish the shoe, the upper brush is separated from the pair of side brushes by the elastic force of the second spring, whereby it is possible to uniformly apply the shoe polish over the entire surface of the shoe and prevent the shoe polish from sticking to the pants.
Abstract:
Disclosed are a method of manufacturing magnesium oxide nanoparticles and a method of manufacturing a magnesium oxide nanosol, which can prepare magnesium oxide particles having a size of tens of nanometers with high yield by using a simple, low-cost process. The methods of manufacturing magnesium oxide nanoparticles and manufacturing magnesium oxide nanosol include preparing a magnesium salt solution by dissolving a magnesium salt in a solvent; impregnating an organic polymer comprising a nanosized pore with the magnesium salt solution; and heating the organic polymer impregnated with the magnesium salt solution until the organic polymer is fired.