Abstract:
A metal-ligand coordination compound containing an aliphatic ligand useful as a catholyte and/or an anolyte that enables the provision of a redox flow battery having high energy efficiency and charge/discharge efficiency.
Abstract:
Disclosed herein are novel electrochromic materials. The electrochromic materials produce various colors. The electrochromic materials can be used to form red electrochromic layers in a simple manner. Therefore, the electrochromic materials are suitable for use in the fabrication of RGB full-color electrochromic devices. Also disclosed herein are electrochromic devices fabricated using the electrochromic materials.
Abstract:
An electrochromic material including a metal-organic framework including a metal, and an organic compound including a functional group, wherein the organic compound forms a coordination complex with the metal.
Abstract:
An organic electrolyte solution for use in a redox flow battery and the redox flow battery including the organic electrolyte solution has a high energy density because re-precipitation is prevented in the organic electrolyte solution or eduction is prevented in an electrode during reduction of a metal ion used as an electrolyte.
Abstract:
Example embodiments provide an electrochromic device using polyphthalate as an electrochromic material and a process for preparing the same. The electrochromic device in accordance with example embodiments enables the production of a solid nanoscale electrochromic device having a bistability using polyphthalate as an electrochromic material, and easy formation of a red electrochromic layer which was not reported in a conventional art. Accordingly, the electrochromic device of example embodiments can be usefully employed for fabrication of RGB color electrochromic displays.
Abstract:
A novel coordination complex formed by dinuclear metal complexation is provided. The complex is a dinuclear metal complex of a compound, wherein the compound comprises a conjugation ring system substituted with: a) an electron donating group selected from —OH, —SH and —NH2; b) an indicating group selected from a chromogenic group, a fluorescent group and an electrochemical group; and c) two binding auxiliary groups, in combination with the electron donating group each of which being coordinated with the metal to provide an anion bonding site, wherein as the complex binds to a anion, the coordination of the electron donating group with the metal is weakened and electron donation of the electron donating group to the conjugation ring system is reinforced such that the reinforced electron donation by the electron donating group is transferred through the conjugation ring system to the indicating group to produce an indicating signal concomitant with the change of its electronic density. The coordination complex shows high sensitivity and high selectivity for pyrophosphate over other anions in an aqueous solvent over a wide pH range. Therefore, the complex is useful for pyrophosphate assay as a pyrophosphate sensor.
Abstract:
A novel coordination complex formed by dinuclear metal complexation is provided. The complex is a dinuclear metal complex of a compound, wherein the compound comprises a conjugation ring system substituted with: a) an electron donating group selected from —OH, —SH and —NH2; b) an indicating group selected from a chromogenic group, a fluorescent group and an electrochemical group; and c) two binding auxiliary groups, in combination with the electron donating group each of which being coordinated with the metal to provide an anion bonding site, wherein as the complex binds to a anion, the coordination of the electron donating group with the metal is weakened and electron donation of the electron donating group to the conjugation ring system is reinforced such that the reinforced electron donation by the electron donating group is transferred through the conjugation ring system to the indicating group to produce an indicating signal concomitant with the change of its electronic density. The coordination complex shows high sensitivity and high selectivity for pyrophosphate over other anions in an aqueous solvent over a wide pH range. Therefore, the complex is useful for pyrophosphate assay as a pyrophosphate sensor.
Abstract:
An organic electrolyte solution for use in a redox flow battery and the redox flow battery including the organic electrolyte solution has a high energy density because re-precipitation is prevented in the organic electrolyte solution or eduction is prevented in an electrode during reduction of a metal ion used as an electrolyte.
Abstract:
Example embodiments provide an electrochromic device using polyphthalate as an electrochromic material and a process for preparing the same. The electrochromic device in accordance with example embodiments enables the production of a solid nanoscale electrochromic device having a bistability using polyphthalate as an electrochromic material, and easy formation of a red electrochromic layer which was not reported in a conventional art. Accordingly, the electrochromic device of example embodiments can be usefully employed for fabrication of RGB color electrochromic displays.
Abstract:
Disclosed herein are novel electrochromic materials. The electrochromic materials produce various colors and have bistability to achieve red-green-blue full colors. Therefore, the electrochromic materials can be used in a variety of electrochromic devices. Also disclosed herein are electrochromic devices fabricated using the electrochromic materials.