摘要:
The present invention relates to an apparatus and a method for receiving signal for extent of timing synchronization in MB-OFDM UWB System. The invention divides the digital samples completed of sampling twice as much as minimum sampling clock required to restore the MB-OFDM received signal into ODD data path and EVEN data path, executes the packet detection and timing synchronization for each of divided path and selects the data of path with larger cross correlation value at the timing synchronization point to secure the stable receiving performance in system environment with severe frequency offset and prevent the FTT window shift within preamble section through adding minimum hardware and structural change without increasing the system clock.
摘要:
A parallel equalizer for a DS-CDMA UWB system and method thereof are provided. The parallel equalizer includes: a filter block for filtering a training input signal in a ‘training mode’, and filtering the plurality of input signals in parallel in a ‘symbol decision mode’; a symbol decision block for obtaining a symbol error based on a output from the filter block and a training symbol in the ‘training mode’, and estimating a transmission symbol for each of the input signals in the ‘symbol decision mode’, obtaining an error of one among the estimated transmission symbols for a symbol error calculating input signal; and an weight update block for updating a filter tap coefficients of the filter block based on the training input signal or the symbol error calculating input signal and the symbol error and transmitting the updated filter tap coefficients into the filter block.
摘要:
Provided is an apparatus and method for detecting a time-frequency code in an MB-OFDM UWB system. The apparatus includes a controller for providing a band selection signal to the RF receiver and outputting a preamble selection signal at regular symbol periods to calculate a cross correlation value for a predetermined time period more than a beacon frame interval when a time-frequency code search start signal is received; and a cross correlator for storing information on preamble patterns, selecting a preamble stored depending on the preamble selection signal, and calculating a cross correlation value for a digital signal transferred through the RF receiver, wherein the controller determines a time-frequency code using a preamble where a peak occurs as a time-frequency code that is currently in use when a peak signal is inputted based on the calculated cross correlation value, and transmits the determined time-frequency code to the MAC receiver.
摘要:
Provided is a method for transforming data using a look-up table. The method includes the steps of: (a) mapping pre-processed input binary data to a constellation diagram divided into four quadrants to output a first complex number; (b) performing addition/subtraction operations between real numbers and between imaginary numbers with respect to the first complex number and a second complex number; and (c) reading a fourth complex from a look-up table in response to the first complex number, the second complex number and a third complex number, the look-up table outputting the fourth complex by performing a subtraction operation on multiplication results between real numbers and between imaginary numbers and an addition operation on multiplication results between the real numbers and the imaginary numbers with respect to the result value of the step (b) and the third complex number. Accordingly, it is possible to reduce the hardware size at the time of IFFT/FFT design and to provide a high-speed, low-power operation.
摘要:
Provided are an apparatus and method for estimating and correcting a frequency offset in a multiband-Orthogonal Frequency Division Multiplexing Ultra-Wideband system using a time frequency hopping. The method includes the steps of: calculating a tangent input having a first value (X) and a second value (Y) by using PS symbols transferred over same frequency band with respect to one of a plurality of frequency bands used for frequency hopping; calculating tan(X/Y) using the first value (X) and the second value (Y), and calculating an index corresponding to the value of tan(X/Y) from a look-up table created by reflecting a relative frequency offset with respect to a center frequency; calculating indexes representing frequency offsets estimated with respect to remaining frequency bands used for frequency hopping from the look-up table by using the calculated index; extracting an index of a numerical controlled oscillator according to correction positions with respect to a plurality of frequency bands by using the calculated indexes; and correcting the frequency offsets estimated using the extracted indexes according to time frequency patterns by using a numerical controlled oscillator table.
摘要:
A resource allocation method for performing resource competition between protocols based on a protocol in a home network environment using multiple protocols is provided. In the resource allocation method, a request of using a resource is received from an external device. An AIFS value is allocated according to a data type of the resource requested from the device. Then, the resource is not provided to the device for an AIFS period. After passing the period of the AIFS value, a back-off timer period is entered. In the back-off timer period, an application protocol of the external device requesting the resource is identified, and an idle time value is allocated according to a type of the identified protocol. Then, a corresponding resource is provided to the first device coming out of the allocated idle time.
摘要:
Provided is a clock synchronization method in a heterogeneous network. The method includes the steps of: at a cycle master, transferring a cycle begin packet with a current time to a transmitting-side bridge; at the transmitting-side bridge, synchronizing using the time included in the cycle begin packet and a time to transmit the cycle begin packet, and transmitting the cycle begin packet with a first synchronization time to a wireless 1394 coordinator; at the wireless 1394 coordinator, synchronizing using the first synchronization time and calculating a second synchronization time; at the wireless 1394 coordinator, transmitting the beacon frame with a created information element structure to a receiving side bridge on a wired IEEE 1394 network; at the receiving bridge, synchronizing using the second synchronization time and calculating a third synchronization time; and at the receiving-side bridge, synchronizing the heterogeneous network by transferring the third synchronization time to the receiving node.
摘要:
Provided are a system and a method for allocating wireless resources in a WPAN. The system includes an MAC layer. The MAC layer divides a superframe into a predetermined number of groups, estimates the number of MASs requested by the MAC client and the number of required consecutive MASs, and allows the consecutive MASs to be distributed and allocated for each divided group. With this structure, adjacent clients can use a common MAS and thus a minimum resource is allocated to the adjacent clients in a WPAN.
摘要:
Provided is a method for forming a route map in a wireless 1394 bridge network. The method for forming a route map in a wireless 1394 bridge network, including the steps of: a) storing route map information; b) collecting changed bus information when a new network is formed according to addition/removal of a bridge; c) checking whether a quantity of the collected bus information exceeds a threshold; d) forming a route map having all bus information when the quantity of the collected bus information exceeds a threshold; and e) forming a route map having changed bus information when collected bus information does not exceed the threshold.
摘要:
Provided are an apparatus and method for estimating and correcting a frequency offset in a multiband-Orthogonal Frequency Division Multiplexing Ultra-Wideband system using a time frequency hopping. The method includes the steps of: calculating a tangent input having a first value (X) and a second value (Y) by using PS symbols transferred over same frequency band with respect to one of a plurality of frequency bands used for frequency hopping; calculating tan(X/Y) using the first value (X) and the second value (Y), and calculating an index corresponding to the value of tan(X/Y) from a look-up table created by reflecting a relative frequency offset with respect to a center frequency; calculating indexes representing frequency offsets estimated with respect to remaining frequency bands used for frequency hopping from the look-up table by using the calculated index; extracting an index of a numerical controlled oscillator according to correction positions with respect to a plurality of frequency bands by using the calculated indexes; and correcting the frequency offsets estimated using the extracted indexes according to time frequency patterns by using a numerical controlled oscillator table.