Abstract:
The present specification describes techniques and apparatuses that enable power conservation in a wireless network. In some cases these techniques and apparatuses enable power conservation during a discover phase and for a wireless network subject to a government mandate requiring a device of the network to passively search for radar transmission prior to establishing communication with another device of the network.
Abstract:
An access point configured to connect a station to a wireless network includes a wireless communication unit configured to send data to the station, and a control unit configured to adjust one or more operational parameters of the access point based on indicative parameters of a basic service set (BSS), which includes the access point and the station.
Abstract:
An access point includes a packet generation module, a packet detection module, and a downlink control module. The packet generation module is configured to generate a multi-user request-to-send (MU-RTS) packet for transmission to each of N remote nodes, wherein N is an integer greater than one. The packet detection module is configured to detect clear-to-send (CTS) packets received from ones of the N remote nodes. The downlink control module is configured to control a downlink to M of the N remote nodes after M CTS packets are detected, wherein M is based on the MU-RTS packet, and wherein M is an integer less than or equal to N.
Abstract:
Methods and systems for providing location-aware WiFi access for a portable device include determining an initial location of the portable device and transmitting the initial location to a WiFi location provider, wherein the WiFi location provider comprises locations and WiFi parameters for a plurality of WiFi access points, wherein each WiFi access point has a corresponding wireless range. The locations and the WiFi parameters for a set of WiFi access points are then received from the WiFi location provider, wherein the set of WiFi access points are within a radius of the initial location of the portable device. At least one WiFi access point in the set of WiFi access points is scanned for that contains the portable device within its wireless range. The portable device then connects to the at least one WiFi access point, thereby forming a WiFi connection.
Abstract:
A system, comprising: a first receiver of a baseband processor (BBP) configured to determine whether a signal includes a frame; a second receiver of a media access controller (MAC) configured to identify a destination address in the frame; a processor configured to selectively process the frame; and a power management module configured to transition each of the first receiver of the BBP, the second receiver of the MAC, and the processor to the active mode based on predetermined criteria.
Abstract:
A host assembly is communicatively coupled to a wireless device assembly via a first interface and via a second interface. A first signal is received at the wireless device assembly from the host assembly. The first signal indicates a request for the wireless device assembly to enter a host sleep mode of operation. In response to receiving the first signal, the wireless device assembly transmits a third signal to the host assembly, wherein the third signal indicates entry into the host sleep mode of operation. Subsequent to transmitting the third signal to the host assembly via the first interface, the wireless device assembly enters into the host sleep mode of operation. While in the host sleep mode of operation, the wireless device assembly transmits, via the second interface, the second signal, and, after transmitting the second signal to the host assembly, exits the host sleep mode of operation.
Abstract:
An integrated circuit comprising a transceiver module, a beacon miss module, and a control module. The transceiver module is configured to, at predetermined times, transition a wireless network device from an inactive mode to an active mode. The beacon miss module is configured to count a number of delivery traffic indication message (DTIM) beacons missed by the transceiver module during each of a first predetermined period and a second predetermined period, wherein the first predetermined period is shorter than the second predetermined period. The control module is configured to adjust the predetermined times at which the wireless network device is transitioned from the inactive mode to the active mode based on the number of the DTIM beacons missed by the transceiver module during each of i) the first predetermined period and ii) the second predetermined period.
Abstract:
A network device includes a base band processor (BBP) receiver to detect a frame in a signal. A media access controller (MAC) receiver identifies a destination address in the frame. A power management module transitions the BBP receiver to an active mode based on an estimated energy level of the signal before transitioning the MAC receiver, a processor, a MAC transmitter, and a BBP transmitter to the active mode; transitions the MAC receiver to the active mode when the frame is present after transitioning the BBP receiver to the active mode and before transitioning the processor, the MAC transmitter, and the BBP transmitter to the active mode; and transitions the processor to the active mode based on the destination address after transitioning the BBP receiver and the MAC receiver to the active mode and before transitioning the MAC transmitter and the BBP transmitter to the active mode.
Abstract:
Methods, apparatuses, and systems are presented for transmitting data packets in a wireless network over a multi-access channel involving sequentially sending a plurality of medium access control (MAC) data packets from a transmitter over the multi-access channel, using a physical layer protocol based on a standard physical layer protocol having a short interframe spacing (SIFS), wherein the plurality of MAC data packets includes at least a first data packet and a second data packet separated by a reduced interframe spacing that is less than SIFS, attempting to receive the plurality of MAC data packets at a receiver using the physical layer protocol, including the first data packet and the second data packet separated by the reduced interframe spacing, and sending from the receiver a single acknowledgement packet associated with attempting to receive the plurality of MAC data packets.
Abstract:
A wireless network device comprises a forwarding table and a mesh routing module. The forwarding table stores direct and reverse entries, each including a destination address, a next hop address, and a metric. The metric of the direct entries corresponds to a route from the wireless network device to the destination address. The metric of the reverse entries corresponds to a route from the destination address to the wireless network device. The mesh routing module wirelessly receives route discovery packets and creates corresponding entries in the forwarding table.