Abstract:
An amplifier includes a negative gain amplifier, a load element, and a transconductance device. The negative gain amplifier has an input and an output. The load element has a first terminal coupled to a power supply voltage terminal, and a second terminal. The transconductance device has a first current electrode coupled to the second terminal of the load element, a control electrode coupled to the output of the negative gain amplifier, and a second current electrode coupled to the input of the negative gain amplifier.
Abstract:
Techniques are disclosed relating to radio frequency (RF) power detection. In one embodiment, a power detection unit is disclosed that includes a multiplier circuit configured to receive a first voltage of a voltage differential signal at gates of a first transistor pair and a second voltage of the voltage differential signal at gates of a second transistor pair. The first multiplier is configured to output a current that varies proportionally to a square of a voltage difference between the first and second voltages. In some embodiments, sources of the first transistor pair are coupled to sources of the second transistor pair, and the sources of the second transistor pair are coupled together. In some embodiments, the power detection unit is configured to compensate for mismatched transistors by applying offset voltages to bodies of transistors in the first and second transistor pairs.
Abstract:
In one form, a power converter for a power detector or the like includes first and third transistors of a first conductivity type, and second and fourth transistors of a second conductivity type. A control electrode of the first transistor receives a first bias voltage plus a positive component of a differential input signal. The second transistor is coupled in series with the first transistor and has a control electrode receiving a second bias voltage plus a negative component of the differential input signal. The third transistor is biased using the first bias voltage plus the negative component. The fourth transistor is coupled in series with the third transistor and is biased using the second bias voltage plus the positive component. A common interconnection point of the first and third transistors forms an output node.
Abstract:
A demodulator can include first data and clock pads to couple the demodulator to a host device via a first bus, and second data and clock pads to couple the demodulator to a radio frequency (RF) tuner via a second bus. The device may further include passthrough logic to couple host data and a host clock from the first bus to the second bus and to couple tuner data from the second bus to the first bus during a passthrough mode. During this mode, however, the two buses may remain electrically decoupled. When the passthrough mode is disabled, the RF tuner is thus shielded from noise present on the first bus.
Abstract:
In one form, a power detector includes first and third transistors of a first conductivity type, and second and fourth transistors of a second conductivity type. A control electrode of the first transistor receives a first bias voltage plus a positive component of a differential input signal. The second transistor is coupled in series with the first transistor and has a control electrode receiving a second bias voltage plus a negative component of the differential input signal. The third transistor is biased using the first bias voltage plus the negative component. The fourth transistor is coupled in series with the third transistor and is biased using the second bias voltage plus the positive component. A common interconnection point of the first and third transistors forms an output node. In another form, a power detector compares an output of a power detector core to multiple threshold voltages in corresponding comparators.
Abstract:
A demodulator can include first data and clock pads to couple the demodulator to a host device via a first bus, and second data and clock pads to couple the demodulator to a radio frequency (RF) tuner via a second bus. The device may further include passthrough logic to couple host data and a host clock from the first bus to the second bus and to couple tuner data from the second bus to the first bus during a passthrough mode. During this mode, however, the two buses may remain electrically decoupled. When the passthrough mode is disabled, the RF tuner is thus shielded from noise present on the first bus.
Abstract:
In one form, a power detector includes first and third transistors of a first conductivity type, and second and fourth transistors of a second conductivity type. A control electrode of the first transistor receives a first bias voltage plus a positive component of a differential input signal. The second transistor is coupled in series with the first transistor and has a control electrode receiving a second bias voltage plus a negative component of the differential input signal. The third transistor is biased using the first bias voltage plus the negative component. The fourth transistor is coupled in series with the third transistor and is biased using the second bias voltage plus the positive component. A common interconnection point of the first and third transistors forms an output node. In another form, a power detector compares an output of a power detector core to multiple threshold voltages in corresponding comparators.
Abstract:
A demodulator can include first data and clock pads to couple the demodulator to a host device via a first bus, and second data and clock pads to couple the demodulator to a radio frequency (RF) tuner via a second bus. The device may further include passthrough logic to couple host data and a host clock from the first bus to the second bus and to couple tuner data from the second bus to the first bus during a passthrough mode. During this mode, however, the two buses may remain electrically decoupled. When the passthrough mode is disabled, the RF tuner is thus shielded from noise present on the first bus.
Abstract:
In one embodiment, a set of tracking filters to be coupled between an amplifier and a mixer is provided. The tracking filters may be differently configured depending on band of operation. For example, a first set of the filters can be configured to maintain a substantially constant Q value across their operating bandwidth while a second set of the filters can be configured to maintain a substantially constant bandwidth across their operating bandwidth.
Abstract:
In one form, a power converter for a power detector or the like includes first and third transistors of a first conductivity type, and second and fourth transistors of a second conductivity type. A control electrode of the first transistor receives a first bias voltage plus a positive component of a differential input signal. The second transistor is coupled in series with the first transistor and has a control electrode receiving a second bias voltage plus a negative component of the differential input signal. The third transistor is biased using the first bias voltage plus the negative component. The fourth transistor is coupled in series with the third transistor and is biased using the second bias voltage plus the positive component. A common interconnection point of the first and third transistors forms an output node.