Abstract:
A perfusion device and a delivery system for repair of a damaged portion of a body vessel. Perfusion device can include a tubular body that is self-expandable, having a proximal portion, a distal portion, and an intermediate portion. One or more series of barbs can be disposed circumferentially along the intermediate portion. Barbs are capable of penetrating into the tunica intima and tunica media of said vessel wall upon insertion of said device into said body vessel, and not into said tunica adventitia. A graft can be associated with the tubular body. Graft has a proximal end and a distal end, and preferably extends entirely along a luminal wall of the tubular body. Graft may also extend along an exterior surface of the tubular body at the proximal and distal portions. A remodelable covering can be applied along the intermediate portion. Delivery devices for the perfusion implant and methods of delivering the perfusion implant are also provided.
Abstract:
A stent (30) is provided with an improved structural member (38) at the end (34) of the stent structure (32) to minimize deformation of the stent structure when pushing forces are applied to the end of the stent. The improved structural member is wider than other structural members (40, 42, 44, 46, 48) in the stent structure. The improved structural member is better able to distribute pushing forces to the other structural members in the stent structure with minimal deformation.
Abstract:
An expandable stent for use in a body vessel comprises a thin-walled tubular framework including two or more circumferentially adjacent end members extending in a longitudinal direction from an end of the framework. In a delivery configuration of the tubular framework, the end members have an interlocking configuration. Each end member has a first interlocking side and a second interlocking side, where the first interlocking side has a circumferentially directed protrusion and the second interlocking side has a circumferentially directed recess. The protrusion of a first end member mates with the recess of a second end member. In an expanded configuration of the tubular framework, the end members are disengaged from the interlocking configuration. Each end member may be an eyelet including an opening for a radiopaque rivet. A method of preparing the expandable stent for delivery into a body vessel is also described.
Abstract:
A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.
Abstract:
A stent graft for use in a medical procedure to treat a dissection of a patient's ascending thoracic aorta. The stent graft includes bare alignment stents at least at a proximal end, and often with a stent at both ends, each stent having opposing sets of curved apices, where the curved section of one broader set of apices has a radius of curvature that is greater than the curved section of the other narrower set of apices. The proximal stent is flared in a manner such that its broad apices occupy a larger circumference around the stent than do its narrower apices, where this flared feature provides for anchoring engagement near the aortic root in a manner not interfering with the coronary arteries or the aortic valve.
Abstract:
A barb for anchoring an implantable medical device to a body vessel comprises a thin-walled body portion for engagement with a structural element of an implantable medical device and a penetrating element extending from the body portion. The body portion has a longitudinal axis. The penetrating element includes a tip portion for anchoring into tissue and a base portion between the tip portion and the body portion. In a deployed configuration of the barb, the base portion curves away from the longitudinal axis at a first curvature and the tip portion curves toward the longitudinal axis at a second curvature which is opposite in sign from the first.
Abstract:
A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.
Abstract:
A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.
Abstract:
A perfusion device and a delivery system for repair of a damaged portion of a body vessel. Perfusion device can include a tubular body that is self-expandable, having a proximal portion, a distal portion, and an intermediate portion. One or more series of barbs can be disposed circumferentially along the intermediate portion. Barbs are capable of penetrating into the tunica intima and tunica media of said vessel wall upon insertion of said device into said body vessel, and not into said tunica adventitia. A graft can be associated with the tubular body. Graft has a proximal end and a distal end, and preferably extends entirely along a luminal wall of the tubular body. Graft may also extend along an exterior surface of the tubular body at the proximal and distal portions. A remodelable covering can be applied along the intermediate portion. Delivery devices for the perfusion implant and methods of delivering the perfusion implant are also provided.
Abstract:
A stent graft (40) for treating Type-A dissections in the ascending aorta (22) is provided with a plurality of diameter-reducing suture loops (56-60) operable to constrain the stent graft during deployment thereof in a patient's aorta. The diameter-reducing loops (56-60) allow the stent graft (40) to be partially deployed, in such a manner that its location can be precisely adjusted in the patient's lumen. In this manner, the stent graft can be placed just by the coronary arteries (26, 28) with confidence that these will not be blocked. The stent graft (40) is also provided with proximal and distal bare stents (44,52) for anchoring purposes.