Abstract:
Disclosed is type THHN cable having a reduced surface coefficient of friction, and the method of manufacture thereof, in which the central conductor core and insulating layer are surrounded by a nylon sheath. A high viscosity, high molecular weight silicone based pulling lubricant for THHN cable, or alternatively, erucamide or stearyl erucamide for small THHN gauge wire, is incorporated, by alternate methods, with the nylon material from which the outer sheath is extruded, and is effective to reduce the required pulling force on the cable during installation.
Abstract:
A system for providing cable support may be provided. The system may comprise a conductor core, a filler that may provide integral core support, and armor. The conductor core may comprise at least one conductor. The filler may be applied around at least a portion of the conductor core. The armor may be applied around at least a portion of the filler. The applied armor may be configured to cause the filler to apply a strong enough force on an exterior of the conductor core configured to keep the conductor core from slipping down an interior of the filler due to a gravitational force. In addition, the applied armor may be configured to cause the filler to apply a strong enough force on an interior of the armor configured to keep a combination of the conductor core and the filler from slipping down the interior of the armor due to the gravitational force.
Abstract:
The present invention includes a cable having reduced surface friction and the method of manufacture thereof including steps in which a conductor wire is coated with a first plastic material and with a mixture of a second plastic material and lubricating material and the coated conductor wire cooled. The cable includes at least one conductor core and at least two coatings of plastic material and incorporates a lubricating material in and/or on the outer layer of plastic material. The equipment for the manufacturing of the electrical cable includes a reel for supplying a conductor wire to an extruding head, which is connected to tanks containing plastic material and lubricating material for coating the conducting wire, and a reel for taking up the cable.
Abstract:
The present invention includes a cable having reduced surface friction and the method of manufacture thereof including steps in which a conductor wire is coated with a first plastic material, coated with a second plastic material and the coated conductor wire then cooled, and includes a step in which a lubricating material is applied to the surface of the cooled, coated cable. The cable includes at least one conductor core and at least one coating of plastic material and incorporates a lubricating material on the exterior coating. The equipment for the manufacturing of the electrical cable includes a reel for supplying a conductor wire to an extruding head, which is connected to tanks containing plastic materials for coating the conducting wire, a reel for taking up the cable, and a device for the application of a lubricating material onto the surface of the cable.
Abstract:
The present invention includes a cable having reduced surface friction and the method of manufacture thereof having steps in which a conductor wire is coated with a plastic material and in which the plastic material is cooled, and includes a step in which the lubricating material is applied to the surface of the cable. The cable includes at least one conductor core and at least one coating of plastic material and incorporates a lubricating material on the exterior coating. The equipment for the manufacturing of electrical cable includes a reel for supplying a conductor wire to an extruding head, which is connected to a tank containing plastic material for coating the conducting wire, a reel for taking up the cable, and a device for the application of a lubricating material onto the surface of the cable.
Abstract:
The present invention includes a cable having reduced surface friction and the method of manufacture thereof having steps in which a conductor wire is coated with a plastic material and in which the plastic material is cooled, and includes a step in which the lubricating material is applied to the surface of the cable. The cable includes at least one conductor core and at least one coating of plastic material and incorporates a lubricating material on the exterior coating. The equipment for the manufacturing of electrical cable includes a reel for supplying a conductor wire to an extruding head, which is connected to a tank containing plastic material for coating the conducting wire, a reel for taking up the cable, and a device for the application of a lubricating material onto the surface of the cable.
Abstract:
A coupled building wire comprising a first length of non-metallic cable having a top surface and a bottom surface and a second length non-metallic cable having a top surface and a bottom surface, wherein the bottom surface of the first length of non-metallic cable is coupled to the top surface of the second length of non-metallic cable, and wherein at least the top surface of the first length of non-metallic cable and at least the bottom surface of the second length of non-metallic cable are at least partly covered with a lubricant coating. The first length of non-metallic cable comprises at least one circuit conductor having a first gauge. The second length of non-metallic cable comprises at least one circuit conductor having a second gauge. The first gauge of the at least one circuit conductor of the first length of non-metallic cable may be substantially equal or unequal to the second gauge of the at least one circuit conductor of the second length of non-metallic cable.
Abstract:
A system for providing cable support may be provided. The system may comprise a conductor core, a filler that may provide integral core support, and armor. The conductor core may comprise at least one conductor. The filler may be applied around at least a portion of the conductor core. The armor may be applied around at least a portion of the filler. The applied armor may be configured to cause the filler to apply a strong enough force on an exterior of the conductor core configured to keep the conductor core from slipping down an interior of the filler due to a gravitational force. In addition, the applied armor may be configured to cause the filler to apply a strong enough force on an interior of the armor configured to keep a combination of the conductor core and the filler from slipping down the interior of the armor due to the gravitational force.
Abstract:
Disclosed is a cable having reduced surface coefficient of friction, and the method of manufacture thereof, in which the central conductor core is surrounded by a sheath in which at least the outer portion is of non-metallic, polymeric material. A pulling lubricant is incorporated by alternate methods with the material from which the outer sheath portion is constructed and is effective to reduce the required pulling force on the cable during installation. Specific compositions are disclosed for cables of the NM and THHN type.
Abstract:
The present invention includes a cable having reduced surface friction and the method of manufacture thereof including steps in which a conductor wire is coated with a first plastic material and with a mixture of a second plastic material and lubricating material and the coated conductor wire cooled. The cable includes at least one conductor core and at least two coatings of plastic material and incorporates a lubricating material in and/or on the outer layer of plastic material. The equipment for the manufacturing of the electrical cable includes a reel for supplying a conductor wire to an extruding head, which is connected to tanks containing plastic material and lubricating material for coating the conducting wire, and a reel for taking up the cable.