Abstract:
There is described an electronic device having a touch-sensitive sensor and a piezoelectric sensor, and a method of operating the device. The electronic device detects an actuation of the touch-sensitive sensor, and a touch-sensitive signal is produced by the touch-sensitive sensor in response to detecting the actuation of the touch-sensitive sensor. Also, the electronic device detects an actuation of the piezoelectric sensor, and a piezoelectric signal is produced by the piezoelectric sensor in response to detecting the actuation of the piezoelectric sensor. Next, the electronic device determines whether the actuation of the touch-sensitive sensor is invalid based on the touch-sensitive signal and the piezoelectric signal. The electronic device then performs, or refrains from performing, an operation in response to determining that the actuation of the touch-sensitive sensor is invalid.
Abstract:
A portable electronic device includes a processor and a detection mechanism operable to detect one or more characteristics relating to how a user handles the electronic device. The processor is operably coupled to the detection mechanism and operable in accordance with stored operating instructions to: determine, based on the detected characteristics, which limb of the user possesses the portable electronic device; and control at least one function of the portable electronic device taking into account which limb of the user possesses the electronic device (e.g., which limb of the user is holding or secured to the electronic device). According to one embodiment, the processor may further determine a reference position for the portable electronic device (e.g., a position of the device at rest) and compare one or more of the detected characteristics to the reference position to determine which limb of the user possesses the electronic device.
Abstract:
A portable electronic device comprising an external surface of a user interface, a piezoelectric transducer coupled to the external surface, and a controller. The piezoelectric transducer generates an electrical output originating at the piezoelectric transducer in response to mechanical actuation applied at the external surface. The controller performs an electronic function of the portable electronic device in response to the piezoelectric transducer generating the electrical output.
Abstract:
An audio/visual (A/V) electronic device includes a display and an integrated visual angular limitation device employed to limit a viewable angular area of the display. One or more directional acoustic transducers that have an associated characteristic acoustic pattern will include at least a portion of the associated characteristic acoustic pattern in cooperative alignment with the limited viewable angular area of the display.
Abstract:
Disclosed is a portable audio device and a quick-disconnect passive acoustic cover. The portable audio device includes a housing and a speaker supported by the housing that have a first system frequency response. The speaker of the portable audio device has a first side and a second side associated with a first audio port and a second audio port, associated with a first acoustic load and a second acoustic load respectively. The housing is configured to removably receive the cover which is configured to redefine at least one of the first acoustic load and the second acoustic load to replace the first system frequency response with a second system frequency response. The cover provides one or more additional surrounding structures, which replace the inherent frequency response with an improved frequency response. Different embodiments of the disclosed cover provide a plurality of sound quality enhancement options to a user.
Abstract:
Embodiments relate to systems for, and methods of, compensating for movement of a loudspeaker relative to a user's head, where the loudspeaker is present in a mobile device. Example systems and methods produce (300) an electrical signal representative of audio, determine (302) a distance between the device and the user's head and automatically set (304) a gain of the electrical signal in accordance with the distance. Example systems and methods also output (306) audio corresponding to the electrical signal with the gain.
Abstract:
An audio/visual (A/V) electronic device includes a display and an integrated visual angular limitation device employed to limit a viewable angular area of the display. One or more directional acoustic transducers that have an associated characteristic acoustic pattern will include at least a portion of the associated characteristic acoustic pattern in cooperative alignment with the limited viewable angular area of the display.
Abstract:
A method for selectively extracting information from a file and performing an operation corresponding to the extracted information includes selecting a data icon having information type; and moving the data icon towards a filter gate icon, in a single action, to initiate extraction. Metadata is extracted from the file associated with the data icon. The metadata comprises operational information used by a filter gate application to perform a function associated with the visual representation of the filter gate icon. Finally, the filter gate application is launched and populated with the extracted metadata from the file.
Abstract:
A mobile station (100) that includes a processor (212) that selectively disables at least one station component to reduce electromagnetic noise generated by the station in the frequency range below 20 kHz when the mobile station is operated in the hearing aid compatible mode. The component can be, for example, a display (204), a light (206) or a wireless interface (208). The processor also can optimize characteristics of audio signals transmitted from the mobile station to the hearing aid for reproduction by the hearing aid. For instance, the processor can selectively adjust filter parameters (216) and/or a signal gain (218) applied to audio signals. A user interface (220) having a soft-key can be provided to cycle through various HAC options.
Abstract:
A system and method is provided for confirming the identity of a user, where the confirmation is made using biometric data. The system includes an internal speaker having an audio port, which is positioned within the ear of the user, and is adapted for producing a signal having one or more frequencies. The system further includes an internal microphone having an audio port, which is positioned within the ear of the user, and is adapted for detecting a resulting signal including the signal produced by the internal speaker and any corresponding signal reflections. A determination is then made as to whether the resulting signal detected by the internal microphone matches the corresponding predetermined expected signal, based upon a prestored hearing profile.