Abstract:
The present invention describes a method to recover an organic tertiary amine from waste sulfuric acid comprising the following steps: a) reacting in a plug flow reactor at a pressure ranging from 1.5 to 12 bar i) waste sulfuric acid comprising organic tertiary amines with ii) ammonia; and b) separating the organic tertiary amine from the reaction mixture obtained in step a).
Abstract:
The invention relates to a process for producing an ammonium salt composition. The process comprises the step of providing a process stream comprising sulfuric acid, methylene dichloride, and a tertiary amine or a precursor thereof. The process further comprises the step of contacting the process stream with ammonia to form a product stream and a waste stream. The product stream comprises the ammonium salt and the waste stream comprises water, methylene dichloride, ammonia, and the tertiary amine. The process further comprises the step of deriving from the waste stream an off gas stream comprising ammonia and a first amount of methylene dichloride. The process also comprises the step of contacting at least a portion of the off gas stream or a derivative thereof with an adsorbent to separate at least a portion of the off gas into a methylene dichloride stream comprising methylene dichloride.
Abstract:
The invention relates to a process of producing an ammonium salt composition. The process comprises the step of providing a process stream comprising sulfuric acid and at least one tertiary amine. The process further comprises the step of contacting the process stream with ammonia to form a waste stream and a product stream. The waste stream comprises water, tertiary amine, and ammonia and the product stream comprises a first amount of ammonium salt. The process further comprises the step of deriving from the waste stream an off gas stream comprising a preliminary amount of ammonia. The process also comprises the step of contacting the off gas stream with an acid to form an ammonium salt stream and a purge stream. The ammonium salt stream comprises a second amount of ammonium salt and the purge stream comprises a reduced amount of ammonia, which is less than the preliminary amount.
Abstract:
The present invention describes a method manufacture of an ammonium sulfate composition having a total organic carbon (TOC) content of 1% by weight or less than 1% by weight, based on the total weight of the composition, comprising the following steps: a) reacting i) waste sulfuric acid comprising an organic tertiary amines with ii) ammonia in an amount sufficient to obtain a pH of 9.5 or higher b) separating the organic tertiary amine from the reaction mixture obtained in step a) wherein during the separation the pH of the reaction mixture is maintained at a pH higher than 10 and c) optionally reducing the content of water and/or other volatile components from the aqueous solution comprising the ammonium sulfate.
Abstract:
The present invention describes a method manufacture of an ammonium sulfate composition having a total organic carbon (TOC) content of 1% by weight or less than 1% by weight, based on the total weight of the composition, comprising the following steps: a) reacting i) waste sulfuric acid comprising an organic tertiary amines with ii) ammonia in an amount sufficient to obtain a pH of 9.5 or higher b) separating the organic tertiary amine from the reaction mixture obtained in step a) wherein during the separation the pH of the reaction mixture is maintained at a pH higher than 10 and c) optionally reducing the content of water and/or other volatile components from the aqueous solution comprising the ammonium sulfate.
Abstract:
This invention relates to a method for producing a sweetener salt of formula APMH+Ace−, according to which aspartame or an aspartame derivative is reacted with acesulfamic acid in a solvent selected among one or several of the following: liquid SO2; halogenated aliphatic hydrocarbons; carbonic acid esters comprising low, aliphatic alcohols; nitroalkanes; alkyl-substituted pyridines; and aliphatic sulfones. The invention also relates to the use of said sweetener salts in food, beverages, pharmaceuticals, and cosmetics.
Abstract:
In one embodiment, the invention is to a process for purifying a by-product stream. The process comprises the step of providing a by-product stream comprising an ammonium salt, dimerized amide, and optionally water. The process further comprises the step of precipitating at least a portion of the dimerized amide in the by-product stream to form solid dimerized amide. The process further comprises the step of separating the solid dimerized amide from the by-product stream to form a treated by-product stream comprising less than 1 wt. % solid dimerized amide.
Abstract:
In one embodiment, the invention is to a process of producing an ammonium salt composition. The process comprises the step of providing a process stream comprising sulfuric acid and at least one tertiary amine. The process further comprises the step of contacting the process stream with ammonia under conditions effective to form a waste stream and a product stream. The waste stream comprises water, the tertiary amine, and ammonia and the product stream comprises a first amount of ammonium salt. The process further comprises the step of deriving from the waste stream an off gas stream comprising a preliminary amount of ammonia. The process also comprises the step of contacting the off gas stream with an acid under conditions effective to form an ammonium salt stream and a purge stream. The ammonium salt stream comprises a second amount of ammonium salt and the purge stream comprises a reduced amount of ammonia, which is less than the preliminary amount.
Abstract:
The invention relates to starting compounds which can be used for the preparation of polyurethanes and can be prepared by reaction of hydroxyl-containing oligomers of formaldehyde.
Abstract:
A device is provided for transporting, in a stepwise manner, tape between a feed reel and takeup reel. An indexer moves across the normal path of the tape displacing it while the tape on the takeup reel side of the indexer is braked. After displacement, the takeup reel takes up the displaced tape while the tape on the feed reel side of the indexer is braked, providing stepwise tape transport in precise intervals determined by the amount of displacement caused by the indexer.