Abstract:
Water-soluble, hydrophobically associating copolymers which comprise new types of hydrophobically associating monomers. The monomers comprise an ethylenically unsaturated group and a polyether group with block structure comprising a hydrophilic polyalkylene oxide block which consists essentially of ethylene oxide groups, and a terminal, hydrophobic polyalkylene oxide block which consists of alkylene oxides with at least 4, preferably at least 5 carbon atoms.
Abstract:
A process for preparing polyether alcohols by reacting one or more unsaturated starters having at least one active hydrogen atom per molecule with one or more alkylene oxides in the liquid phase in the presence of a basic catalyst in a reactor, wherein the one or more alkylene oxides are introduced into the reactor in such a way that the concentration of unreacted alkylene oxide in the liquid reaction mixture in the reactor is increased as far as possible with increasing degree of addition of the alkylene oxide onto the starter, with the proviso that the temperature at the end of a runaway reaction is at any point in time at least 100 K below the onset temperature of the decomposition reaction of the liquid reaction mixture, is proposed.
Abstract:
The invention provides a process for continuously preparing polyether alcohols using DMC catalysts, which comprises, in a first step, in a continuous reactor, adding alkylene oxides onto H-functional starter substances and transferring the output of this reactor to a second step in a reactor which is divided by closed trays into mutually separate sections, known as compartments, which are connected to one another by external pipelines, in which the output of the reactor from the first step of the reaction passes through the compartments in succession.
Abstract:
The invention relates to starting compounds which can be used for the preparation of polyurethanes and can be prepared by reaction of hydroxyl-containing oligomers of formaldehyde.
Abstract:
The invention provides a process for continuously preparing polyether alcohols by adding alkylene oxides to H-functional starter substances using a DMC catalyst, comprising the steps of a) preparing a precursor by continuously metering an H-functional starter substance, an alkylene oxide or a mixture of at least two alkylene oxides and the required amount of DMC catalyst into a continuous reactor, b) continuously withdrawing the precursor from step a) from the reactor, c) continuously metering the product from step a), an alkylene oxide different from that in step a) or a mixture of at least two alkylene oxides different from that in step a) and, if appropriate, the required amount of DMC catalyst into a further continuous reactor.
Abstract:
The invention relates to polyether alcohols, to a process for preparing polyether alcohols by reacting alkylene oxides in the presence of a double metal cyanide (DMC) catalyst with at least one saturated OH component which may, if appropriate, have previously been reacted with an alkylene oxide, wherein an antioxidant is added before or during the reaction, and also to the further processing of the polyether alcohols to form polyurethanes.
Abstract:
Process for preparing polyether polyols having an end block of ethylene oxide by addition of alkylene oxides onto H-functional starter substances, in which A) a polyether polyol precursor is prepared by means of double metal cyanide (DMC) catalysis in a semicontinuous mode of operation in which previously prepared polyether polyol together with the DMC catalyst are placed in a reactor and H-functional starter substance and propylene oxide are added continuously, B) the polyether polyol precursor from stage A) is reacted with propylene oxide or an ethylene oxide/propylene oxide mixture in the presence of the DMC catalyst in a continuously operating reactor to give a polyether polyol intermediate, C) the intermediate from stage B) is mixed with an alkali metal hydroxide as catalyst and D) reacted with ethylene oxide in a continuously operating reactor to give the final product, E) the catalyst is separated off from the final product obtained in stage D).
Abstract:
The present invention relates to polyetherols are prepared by a process comprising the reaction of at least one alkylene oxide with at least one initiator compound in the presence of at least one double metal cyanide compound to give a polyetherol and the treatment of the resulting polyetherol with steam or with an inert gas and steam, and the polyetherols obtainable by such a process as well as the use thereof for the synthesis of polyurethanes.
Abstract:
Water-soluble, hydrophobically associating copolymers which comprise new types of hydrophobically associating monomers. The monomers comprise an ethylenically unsaturated group and a polyether group with block structure comprising a hydrophilic polyalkylene oxide block which consists essentially of ethylene oxide groups, and a terminal, hydrophobic polyalkylene oxide block which consists of alkylene oxides with at least 4, preferably at least 5 carbon atoms.
Abstract:
The invention relates to a process for preparing DMC catalysts by reaction of cyanometalate compounds with metal salts, wherein the reaction is carried out in ionic liquids as solvents or suspension media.