摘要:
A control rod for a pressurized-water nuclear reactor contains an absorber rod which is arranged in a casing tube. At least in a lower section, the absorber rod is provided with at least one recess which takes up at most a portion of the circumferential surface of this section. This reduces problems associated with an expansion in the volume of the absorber rod.
摘要:
Austenitic steel intended for use in radiation areas of nuclear reactors is largely resistant to irradiation-induced stress corrosion cracking if its silicon, phosphorus and sulfur contents are reduced in relation to standard commercial steel quantities and its grain structure has finely dispersed carbide precipitation, particularly of niobium carbide. The finely dispersed distribution can be induced in that larger niobium precipitation takes place at annealing temperatures between 1100 and 1150.degree. C., and carbide is precipitated through the corresponding annealing at temperatures of approximately 750.degree. C.
摘要:
A control rod for a pressurized-water nuclear reactor contains an absorber rod which is arranged in a casing tube. At least in a lower section, the absorber rod is provided with at least one recess which takes up at most a portion of the circumferential surface of this section. This reduces problems associated with an expansion in the volume of the absorber rod.
摘要:
A spacer of a fuel assembly having intersecting webs undergoes reduced longitudinal expansion as a result of corrosion during an operating period. The webs have intersection locations at which assembly gaps are provided. The assembly gaps have widths which correspond essentially, at most over a fraction of their total length, to the wall thickness of an intersecting web, but are wider in a remaining region. Since corrosion layers growing from an edge of an assembly gap toward the intersecting web cannot touch the web, no solid pressure, which could lead to longitudinal expansion, builds up.
摘要:
A method of producing austenite steel for use in the radiation zone of a nuclear reactor. The method comprising the steps of forming the austenite steel with about 17% by weight chromium, about 9 to 11.5% by weight nickel, about 0.04% by weight carbon, and iron impurities whose content of silicon is about 0.1% by weight and whose total content of sulfur and phosphorous is less than 0.03% by weight; and exposing the austenite steel to a temperature treatment at a temperature less than 1150 .degree. C. to produce a fine grain lattice with grain diameter features under approximately 20 .mu.m.