Abstract:
An electromechanical generator for converting mechanical vibrational energy into electrical energy, the electromechanical generator comprising: a central mast, an electrically conductive coil assembly fixedly mounted to the mast, the coil assembly at least partly surrounding the mast, a mount for the coil assembly extending radially inwardly of the coil assembly and fixing the coil assembly to the mast, wherein the mount comprises a conical wall extending between the coil assembly and the mast, a magnetic core assembly movably mounted to the mast for linear vibrational motion along an axis about an equilibrium position on the axis, the magnetic core assembly at least partly surrounding the coil assembly and the mast, and a biasing device mounted between the mast and the magnetic core assembly to bias the magnetic core assembly in opposed directions along the axis towards the equilibrium position.
Abstract:
The invention provides a bracket for mounting external equipment to the underside of rolling stock, the bracket comprising first and second plates, and at least one joining member disposed between the first and second plates; wherein the joining member(s) are joined to the first plate by a plurality of joints and joined to the second plate by a plurality of joints. The invention also provides a rolling stock assembly comprising a bracket, a method for mounting external equipment to an underside of rolling stock, and a method for manufacturing a bracket for mounting external equipment to the underside of rolling stock.
Abstract:
Apparatus for monitoring an axle of a wheelset assembly of a railway vehicle, the apparatus comprising a wireless sensor node fitted to a wheelset assembly, the wheelset assembly comprising an axle mounted between opposed wheels, each wheel being fitted to a respective opposite end of the axle, the wireless sensor node comprising a vibration energy harvester for converting mechanical energy from vibration in the wheelset assembly into electrical energy, a sensor for measuring a parameter, and a wireless transmitter for wirelessly transmitting the measured parameter or data associated therewith, and the apparatus further comprising a processor for processing the measured parameter to produce processed data, wherein the sensor is an accelerometer mounted to an end of the axle and the sensor and processor are arranged respectively to measure and process an axle percussion vibration frequency in the form of resonant vibration along the axle.
Abstract:
An electromechanical generator for converting mechanical vibrational energy into electrical energy. The electromechanical generator has a housing and an electrically conductive coil assembly movably mounted in the housing. The coil assembly has radially inner and outer sides, and upper and lower edges. A mount for the coil assembly extends inwardly of the radially inner side for mounting the coil assembly for linear vibrational motion along an axis. A first biasing device is mounted between the housing and the mount to bias the electrically conductive coil assembly in opposed directions along the axis towards a central coil position, a magnetic core assembly is movably mounted in the housing for linear vibrational motion along the axis, and a second biasing device is mounted between the housing and the magnetic core assembly to bias the magnetic core assembly in opposed directions along the axis towards a central magnet position.
Abstract:
An electromechanical generator for converting mechanical vibrational energy into electrical energy. The electromechanical generator has a housing and an electrically conductive coil assembly movably mounted in the housing. The coil assembly has radially inner and outer sides, and upper and lower edges. A mount for the coil assembly extends inwardly of the radially inner side for mounting the coil assembly for linear vibrational motion along an axis. A first biasing device is mounted between the housing and the mount to bias the electrically conductive coil assembly in opposed directions along the axis towards a central coil position, a magnetic core assembly is movably mounted in the housing for linear vibrational motion along the axis, and a second biasing device is mounted between the housing and the magnetic core assembly to bias the magnetic core assembly in opposed directions along the axis towards a central magnet position.
Abstract:
An electromechanical generator for converting mechanical vibrational energy into electrical energy, the electromechanical generator comprising: a central mast, an electrically conductive coil assembly fixedly mounted to the mast, a magnetic core assembly movably mounted to the mast for linear vibrational motion a biasing device mounted between the mast and the magnetic core assembly, the biasing device comprising a pair of first and second plate springs, and a resilient device mounted between the biasing device and the magnetic core assembly, the resilient device being configured to be deformed between the biasing device and the magnetic core assembly when the magnetic core assembly has moved, by the linear vibrational motion, away from an equilibrium position by a predetermined non-zero threshold amplitude, the resilient device comprising a pair of first and second flat spring elements, each having an outer edge fitted to the magnetic core assembly and a free inner edge.
Abstract:
An electromechanical generator for converting mechanical vibrational energy into electrical energy, the electromechanical generator comprising: a central mast, an electrically conductive coil assembly fixedly mounted to the mast, a mount for the coil assembly, a magnetic core assembly movably mounted to the mast for vibrational motion along an axis, wherein the magnetic core assembly comprises: an outer core, comprising a one-piece tubular body, which encloses the electrically conductive coil assembly side, first and second end cores magnetically coupled to the outer core at respective first and second ends of the outer core, the first and second end cores extending radially inwardly and enclosing respective first and second opposite edges of the coil assembly, and first and second magnets spaced along the axis, contacting and being magnetically coupled to the respective first and second end cores, and defining therebetween a gap in the magnetic core assembly through which the mount extends.
Abstract:
Disclosed is an electromechanical generator for converting mechanical vibrational energy into electrical energy, the electromechanical generator comprising: a mass resiliently connected to a body by a biasing device and adapted to oscillate about an equilibrium point relative to the body with an oscillation amplitude, a transducer configured to convert oscillations of the mass about the equilibrium point relative to the body into electrical energy, and a resilient device disposed between the biasing device and one of the mass and the body, wherein the resilient device is configured to be deformed between the biasing device and the one of the mass and the body only when the oscillation amplitude exceeds a predetermined non-zero threshold amplitude. The resilient device may comprise one of a helical spring, an O-ring and a spring washer, such as a Belleville washer, a curved disc spring, a wave washer, and a split washer.
Abstract:
Disclosed is an electromechanical generator for converting mechanical vibrational energy into electrical energy, the electromechanical generator comprising: a mass resiliently connected to a body by a biasing device and adapted to oscillate about an equilibrium point relative to the body with an oscillation amplitude, a transducer configured to convert oscillations of the mass about the equilibrium point relative to the body into electrical energy, and a resilient device disposed between the biasing device and one of the mass and the body, wherein the resilient device is configured to be deformed between the biasing device and the one of the mass and the body only when the oscillation amplitude exceeds a predetermined non-zero threshold amplitude. The resilient device may comprise one of a helical spring, an O-ring and a spring washer, such as a Belleville washer, a curved disc spring, a wave washer, and a split washer.
Abstract:
An electromechanical generator for converting mechanical vibrational energy into electrical energy, the electromechanical generator comprising: a central mast, an electrically conductive coil assembly fixedly mounted to the mast, the coil assembly at least partly surrounding the mast, a mount for the coil assembly extending radially inwardly of the coil assembly and fixing the coil assembly to the mast, wherein the mount comprises a conical wall extending between the coil assembly and the mast, a magnetic core assembly movably mounted to the mast for linear vibrational motion along an axis about an equilibrium position on the axis, the magnetic core assembly at least partly surrounding the coil assembly and the mast, and a biasing device mounted between the mast and the magnetic core assembly to bias the magnetic core assembly in opposed directions along the axis towards the equilibrium position.