Abstract:
A torque converter having a first damper stage, a second damper stage, a floating flange torsionally connecting the first and second damper stages, an inertia element, and a tuned torsion damper. The torsion damper connects the inertia element and the flange. In a preferred embodiment, the inertia element is a turbine. In one embodiment, the first damper stage is a radially outer damper stage and the second damper stage is a radially inner damper stage. In another embodiment, the torsion damper generates a friction torque when rotated.
Abstract:
The present invention broadly comprises a method for controlling engine speed, engine torque, and torque converter output including the steps of applying engine torque to a torque converter and modulating the transferring of the torque to a pump for the torque converter. In some aspects, the torque converter further comprises a pump clutch and the method applies torque to the pump clutch and controllably slips the pump clutch. In some aspects, the method supplies engine torque from an engine with a turbocharger and controllably slips the pump clutch to increase speed and torque for the engine during a launch event for the vehicle or determines a parameter regarding operation of the vehicle and controllably slips the pump clutch responsive to the parameter. The present invention also comprises a method for controlling torque converter output by connecting a clutch between an engine and a torque converter and controllably slipping the clutch.
Abstract:
A damper assembly for a torque converter includes a drive side elastic element arranged for transmitting torque to a turbine for the torque converter in a first direction and a coast side elastic element, separate from the drive side elastic element, arranged for transmitting torque to the turbine in a second direction opposite the first direction. In an example embodiment, a slope of a torque curve for the damper remains constant in a transition region between transmitting torque to the turbine in the first direction and transmitting torque to the turbine in the second direction. In an example embodiment, the damper assembly includes an input damper and an output damper. The elastic elements are disposed in a torque path between the input damper and the output damper. In an example embodiment, the input damper is selectively engaged with a cover for the torque converter and the output damper is drivingly engaged with an output hub for the torque converter.
Abstract:
A torque converter including a cover having a central longitudinal axis and an outer surface and a pilot stamped from metal. The pilot includes a disc at least partially radially aligned with the axis for the cover. The pilot and the cover central axis are fixedly secured to each other. In a first embodiment, the disc is flat. In a second embodiment, the disc is annular. In a third embodiment, the pilot includes a machined outer circumferential surface. In a fourth embodiment, the pilot includes first and second portions radially off-set with respect to one another. In a fifth embodiment, the pilot includes a portion axially extending from the portion of the disc at least partially radially aligned with the axis for the cover. In a preferred embodiment, the cover and pilot are fixedly secured by welding.
Abstract:
A torque converter including a cover having a central longitudinal axis and an outer surface and a pilot stamped from metal. The pilot includes a disc at least partially radially aligned with the axis for the cover. The pilot and the cover central axis are fixedly secured to each other. In a first embodiment, the disc is flat. In a second embodiment, the disc is annular. In a third embodiment, the pilot includes a machined outer circumferential surface. In a fourth embodiment, the pilot includes first and second portions radially off-set with respect to one another. In a fifth embodiment, the pilot includes a portion axially extending from the portion of the disc at least partially radially aligned with the axis for the cover. In a preferred embodiment, the cover and pilot are fixedly secured by welding.
Abstract:
A dual automatic mechanically actuated wet clutch device, for operation within a fluid tight housing, for a dual input shaft transmission that includes tightly specified average spacing between friction plate surfaces where the average spacing is selected from between about 0.05 mm to about 0.25 mm in an open position. The clutch has at least first and second independently actuatable clutch portions, and at least one clutch pack in the first or second clutch portion; and mechanical apparatus provided to move friction plates in at least one of the clutch portions toward each other so that they engage. The invention also includes apparatus and methods for adjusting and maintaining the spacing between the friction plate surfaces.
Abstract:
An actuating device for a motor vehicle transmission having multiple transmission steps, having a threaded spindle which is mounted so it is rotationally movable and axially fixed and a spindle nut which is positioned on this threaded spindle and may be driven thereby, and also having a first component, which is positioned so it is axially fixed and rotatable to select gears of the motor vehicle transmission, which may be coupled and/or is coupled via a rotational carrier unit to the spindle nut, so that the first component may be driven to rotate by the threaded spindle via the spindle nut to select gears, a braking unit being provided to reduce and/or avoid axial position changes of the spindle nut caused by mass inertia as a result a braking procedures of the threaded spindle from a movement rotationally driving the first component; as well as a motor vehicle transmission unit, a motor vehicle drivetrain, and a method for reducing or avoiding control errors caused by mass inertia in the control of gear changing actions in a motor vehicle transmission.
Abstract:
A torque converter comprising: an axis of rotation; a stator including a side plate having a first radial surface; one of an impeller shell or a turbine shell having a second tapered surface facing the stator side plate first radial surface; a hydrodynamic thrust bearing disposed between the stator side plate and the one of an impeller shell or a turbine shell, and comprising: a thrust surface facing one of the first radial surface or the second tapered surface with a fluid pathway therebetween; a supporting surface opposite the thrust surface and facing the other of the first radial surface or the second tapered surface; and an opening concentric with the axis of rotation; and, a gap between the supporting surface and the other of the first radial surface or the second tapered surface such that the bearing thrust surface is alignable to be parallel with the one of the first radial surface or the second tapered surface.
Abstract:
A torque converter includes an impeller shell and a backing plate defining at least a portion of a first hydraulic chamber, a cover and a piston plate defining at least a portion of a second hydraulic chamber, and a third hydraulic chamber. The third chamber is sealed from the first and second hydraulic chambers such that a hydraulic flow between the third chamber and the other chambers is at least restricted. In an example embodiment, the first chamber is for being pressurized to prevent cavitation in the turbine, stator, or impeller, the second or third chamber is for being pressurized to engage the lockup clutch, and the other of the second or third chamber is for being de-pressurized to reduce a back pressure on the lockup clutch piston plate.
Abstract:
A hub assembly for a torque converter includes a hub with a circumferential groove and a seal arranged to contact an element of the torque converter. The seal is at least partially disposed in the groove. The groove has a first radial wall, a second radial wall axially offset with respect to the first radial wall, and at least one opening in the second radial wall. The seal is axially displaceable to seal against the first wall to block fluid flow between the hub and the element and to seal against the second radial wall and enable fluid flow through the opening.