Abstract:
An external component of a prosthesis, including a first module including a functional component and first structure including magnetic material. The first module is configured to be retained against skin via a magnetic field at least partially generated by a magnet implanted in a recipient that interacts with the magnetic material of the first structure, the first module including a skin interfacing surface configured to interact with skin of the recipient when the first module is retained against the skin of the recipient, a second module including a second structure including magnetic material configured to enhance magnetic retention of the external component to skin of a recipient, wherein the second module is removably attached to the first module and visible from an outside of the external component when the second module is attached to the first module and when viewed from a side opposite the skin interfacing side.
Abstract:
A hearing prosthesis, the hearing prosthesis including a plurality of sound capture devices and a determinator configured to generate a parameter indicative of an orientation of the plurality of sound capture devices relative to a reference, wherein the hearing prosthesis is configured to adjust a direction of focus of the hearing prosthesis based on at least the parameter.
Abstract:
A hearing prosthesis, the hearing prosthesis including a plurality of sound capture devices and a determinator configured to generate a parameter indicative of an orientation of the plurality of sound capture devices relative to a reference, wherein the hearing prosthesis is configured to adjust a direction of focus of the hearing prosthesis based on at least the parameter.
Abstract:
In one embodiment, a receiver including one or more signal-processing blocks and a hardware-based matrix co-processor. The one or more signal-processing blocks are adapted to generate a processed signal from a received signal. The hardware-based matrix co-processor includes two or more different matrix-computation engines, each adapted to perform a different matrix computation, and one or more shared hardware-computation units, each adapted to perform a mathematical operation. At least one signal-processing block is adapted to offload matrix-based signal processing to the hardware-based matrix co-processor. Each of the two or more different matrix-computation engines is adapted to offload the same type of mathematical processing to at least one of the one or more shared hardware-computation units.
Abstract:
In one embodiment, an HSDPA co-processor for 3GPP Release 6 Category 8 (7.2 Mb/s) HSDPA that provides all chip-rate, symbol-rate, physical-channel, and transport-channel processing for HSDPA in 90 nm CMOS. The co-processor design is scalable to all HSDPA data rates up to 14 Mb/s. The coprocessor implements an Advanced Receiver based on an NLMS equalizer, supports RX diversity and TX diversity, and provides up to 6.4 dB better performance than a typical single-antenna rake receiver. Thus, 3GPP R6 HSDPA functionality can be added to a legacy R99 modem using an HSDPA co-processor consistent with embodiments of the present invention, at a reasonable incremental cost and power.
Abstract:
In one embodiment, a receiver including one or more signal-processing blocks and a hardware-based matrix co-processor. The one or more signal-processing blocks are adapted to generate a processed signal from a received signal. The hardware-based matrix co-processor includes two or more different matrix-computation engines, each adapted to perform a different matrix computation, and one or more shared hardware-computation units, each adapted to perform a mathematical operation. At least one signal-processing block is adapted to offload matrix-based signal processing to the hardware-based matrix co-processor. Each of the two or more different matrix-computation engines is adapted to offload the same type of mathematical processing to at least one of the one or more shared hardware-computation units.
Abstract:
An external component of a prosthesis, including a first module including a functional component and first structure including magnetic material. The first module is configured to be retained against skin via a magnetic field at least partially generated by a magnet implanted in a recipient that interacts with the magnetic material of the first structure, the first module including a skin interfacing surface configured to interact with skin of the recipient when the first module is retained against the skin of the recipient, a second module including a second structure including magnetic material configured to enhance magnetic retention of the external component to skin of a recipient, wherein the second module is removably attached to the first module and visible from an outside of the external component when the second module is attached to the first module and when viewed from a side opposite the skin interfacing side.
Abstract:
A hearing prosthesis, the hearing prosthesis including a plurality of sound capture devices and a determinator configured to generate a parameter indicative of an orientation of the plurality of sound capture devices relative to a reference, wherein the hearing prosthesis is configured to adjust a direction of focus of the hearing prosthesis based on at least the parameter.
Abstract:
Embodiments presented herein are generally directed to a sound processor accessory configured to be mechanically and electrically connected to a sound processor of an auditory prosthesis. The sound processor accessory comprises first and second sound input elements that are each configured to independently provide electrical signals representing sound signals to the sound processor via a shared connection.
Abstract:
A method of operating a communications circuit with at least one control channel and at least one data channel includes the steps of monitoring the at least one control channel, powering a receiver portion of the circuit when the at least one control channel indicates that data is to be received, and refraining from powering the receiver portion when the at least one control channel indicates that data is not to be received. The circuit can operate, for example, under the 3GPP HSDPA standard. Where desired, the clock and power supply to the receiver portion and a bit rate processing portion can be independently gated.