Abstract:
Methods and systems for non-invasive treatment of tissue using high intensity focused ultrasound (“HIFU”) therapy. A method of non-invasively treating tissue in accordance with an embodiment of the present technology, for example, can include positioning a focal plane of an ultrasound source at a target site in tissue. The ultrasound source can be configured to emit HIFU waves. The method can further include pulsing ultrasound energy from the ultrasound source toward the target site, and generating shock waves in the tissue to induce boiling of the tissue at the target site within milliseconds. The boiling of the tissue at least substantially emulsifies the tissue.
Abstract:
Methods of derating a nonlinear ultrasound field and associated systems are disclosed herein. A method of derating a nonlinear ultrasound field in accordance with an embodiment of the present technology can include, for example, calibrating an ultrasound source to a first source voltage (Vw) and generating a nonlinear acoustic wave from the ultrasound source into water. The method can further include measuring a focal waveform of the nonlinear acoustic wave and determining a second source voltage (Vt) of the ultrasound source that generates the same focal waveform in tissue.
Abstract:
The present technology is directed to methods of soft tissue emulsification using a mechanism of ultrasonic atomization inside gas or vapor cavities, and associated systems and devices. In several embodiments, for example, a method of non-invasively treating tissue includes pulsing ultrasound energy from the ultrasound source toward the target site in tissue. The ultrasound source is configured to emit high intensity focused ultrasound (HIFU) waves. The target site comprises a pressure-release interface of a gas or vapor cavity located within the tissue. The method continues by generating shock waves in the tissue to induce a lesion in the tissue at the target site. The method additionally includes characterizing the lesion based on a degree of at least one of a mechanical or thermal ablation of the tissue.
Abstract:
Methods of derating a nonlinear ultrasound field and associated systems are disclosed herein. A method of derating a nonlinear ultrasound field in accordance with an embodiment of the present technology can include, for example, calibrating an ultrasound source to a first source voltage (Vw) and generating a nonlinear acoustic wave from the ultrasound source into water. The method can further include measuring a focal waveform of the nonlinear acoustic wave and determining a second source voltage (Vt) of the ultrasound source that generates the same focal waveform in tissue.
Abstract:
A method includes transmitting a focused ultrasound wave into a medium to form (i) an ultrasound intensity well within the medium that exhibits a first range of acoustic pressure and (ii) a surrounding region of the medium that surrounds the ultrasound intensity well and exhibits a second range of acoustic pressure that exceeds the first range of acoustic pressure. The method further includes confining an object within the ultrasound intensity well. Additionally, an acoustic lens is configured to be acoustically coupled to an acoustic transducer. The acoustic lens has a varying longitudinal thickness that increases proportionally with respect to increasing azimuth angle of the acoustic lens. Another acoustic lens is configured to be acoustically coupled to an acoustic that increases proportionally with respect to increasing azimuth angle of the segment.
Abstract:
The present technology is directed to methods of soft tissue emulsification using a mechanism of ultrasonic atomization inside gas or vapor cavities, and associated systems and devices. In several embodiments, for example, a method of non-invasively treating tissue includes pulsing ultrasound energy from the ultrasound source toward the target site in tissue. The ultrasound source is configured to emit high intensity focused ultrasound (HIFU) waves. The target site comprises a pressure-release interface of a gas or vapor cavity located within the tissue. The method continues by generating shock waves in the tissue to induce a lesion in the tissue at the target site. The method additionally includes characterizing the lesion based on a degree of at least one of a mechanical or thermal ablation of the tissue.
Abstract:
Methods and systems for non-invasive treatment of tissue using high intensity focused ultrasound (“HIFU”) therapy. A method of non-invasively treating tissue in accordance with an embodiment of the present technology, for example, can include positioning a focal plane of an ultrasound source at a target site in tissue. The ultrasound source can be configured to emit HIFU waves. The method can further include pulsing ultrasound energy from the ultrasound source toward the target site, and generating shock waves in the tissue to induce boiling of the tissue at the target site within milliseconds. The boiling of the tissue at least substantially emulsifies the tissue.
Abstract:
The present technology relates generally to portable acoustic holography systems for therapeutic ultrasound sources, and associated devices and methods. In some embodiments, a method of characterizing an ultrasound source by acoustic holography includes the use of a transducer geometry characteristic, a transducer operation characteristic, and a holography system measurement characteristic. A control computer can be instructed to determine holography measurement parameters. Based on the holography measurement parameters, the method can include scanning a target surface to obtain a hologram. Waveform measurements at a plurality of points on the target surface can be captured. Finally, the method can include processing the measurements to reconstruct at least one characteristic of the ultrasound source.
Abstract:
The present technology is directed to methods for characterizing nonlinear ultrasound fields and associated systems and devices. In several embodiments, for example, a method of calculating output of a high intensity focused ultrasound (HIFU) device comprises treating a target site with a multi-element HIFU array. In some embodiments, the array comprises a generally spherical segment. The method can further include simulating a field of the array by setting a boundary condition for the array. The boundary condition can be set by simplifying at least one geometrical aspect of the generally spherical segment.