Abstract:
Methods and devices for digital printing to a recording medium are described. The printing can use a liquid print ink that includes a flammable carrier. Print control data can be generated from print data and the print control data can activate one or more print groups to print to the recording medium. An areal coverage can be determined based on the print control data. The areal coverage corresponds to a quantity of color applied onto the recording medium. The determined areal coverage can be limited to a predetermined maximum average areal coverage within a predetermined averaging area. The predetermined maximum average areal coverage can be less than a maximum theoretical areal coverage. The recording medium can be heated in, for example, a heating chamber. The predetermined averaging area can be smaller than an area of the recording medium located within the heating chamber.
Abstract:
A method and a controller operable to adjust the field strength of an electrical field for the toner transfer in an electrographic printing process. Current values of framework parameters can be determined and a control loop configured to adjust the electrical field is adapted based on current values of the framework parameters. An electrical reference variable of the control loop can be adapted to the current values of the framework parameters. The electrical reference variable can include, for example, a current and/or a voltage for the toner transfer.
Abstract:
A method and device for digital printing to a recording medium with liquid print color is described. In a method for digital printing, a print image defined by print data is printed onto the recording medium via application of the liquid print color. After the application of the liquid print color onto the recording medium, the recording medium can be heated to vaporize the carrier fluid. Upon heating, air is supplied that mixes with the vapor to form a combustible gas. The combustible gas can be supplied to a combustion chamber and converted into waste gas. In a method for digital printing, an areal coverage can be determined. The areal coverage describes a quantity of color applied onto the recording medium by the carrier fluid. Further, the air supply can be proportionally controlled to the determined areal coverage.
Abstract:
Methods to exchange printing substrate rolls in a printer are described. In an exchange method, ink is printed to a first printing substrate web being unwound from a first printing substrate roll. The first printing substrate web is exchanged with a second printing substrate web being unwound from a second printing substrate roll. A transition region of the first and the second printing substrate webs is printed to during the exchange of the first and the second printing substrate webs. The transition region can be formed by gluing the second and the first printing substrate webs atop one another. A predetermined pattern can be printed onto the transition region during the exchange of the printing substrate rolls. The predetermined pattern can be chosen such that all nozzles of at least one print head are used for printing.
Abstract:
Methods and devices for digital printing to a recording medium are described. The printing can use a liquid print ink that includes a flammable carrier. Print control data can be generated from print data and the print control data can activate one or more print groups to print to the recording medium. An areal coverage can be determined based on the print control data. The areal coverage corresponds to a quantity of color applied onto the recording medium. The determined areal coverage can be limited to a predetermined maximum average areal coverage within a predetermined averaging area. The predetermined maximum average areal coverage can be less than a maximum theoretical areal coverage. The recording medium can be heated in, for example, a heating chamber. The predetermined averaging area can be smaller than an area of the recording medium located within the heating chamber.
Abstract:
In a method or system to control a temperature of a substrate to be printed to and which exhibits said temperature during a traversal of a printing system, specifically selecting or controlling a fluid temperature of a liquid fluid to be applied onto the substrate to specifically influence the substrate temperature, the fluid being applied onto the substrate before the substrate is printed to. At least one of the fluid temperature and a quantity of the fluid applied onto the substrate per time unit at least depending on at least one of a first measurement value for a temperature of the substrate before the application of the fluid and a second measurement value for a surface temperature of the substrate after the application of the fluid.
Abstract:
In a method or a transfer station for a digital printer, liquid developer with toner particles can be directed towards a first side of a recording medium and onto the first side of the recording medium at a transfer point. A transfer roller can be configured to direct the liquid developer towards the recording medium. The toner particles can have a first polarity and the recording medium can move past the transfer roller along a transport direction. A layer of charged particles can be applied from a second side of the recording medium by a surface charging station. The surface charging station can be arranged before the transfer point in the transport direction. The second side of the recording medium can be opposite the first side. The charged particles can have a second polarity that is opposite the first polarity.
Abstract:
In a method to configure a controller for a production system including multiple components that respectively including a client computer connected via data connections with a main computer, the components connected to the data network are scanned to obtain scanned information. A network map is created using the scanned information. The network map can include the main computer, the data connections and the components. The controller can be configured according to specifications of the created network map. Monitoring routines that are specific to the respective components can be executed. Upon the scanning of the components, operating system functions at the client computers are exclusively called so that software modules specifically for the scanning must not be present at the client computers.
Abstract:
In a printing apparatus a print bar assembly is provided with multiple print bars, a designed space being present between the print bars and a recording medium. A climate control has a feed channel running parallel to a length of the recording medium. Openings lead from the feed channel to the print bars to introduce a conditioned gas flow of predetermined temperature and moisture to the print bars such that a laminar gas flow is generated in the designed space between nozzle plates of the print bars and the recording medium. A barrier is arranged at an intake of the print bar assembly which blocks an air boundary layer entrained with the moving recording medium before the print bar assembly.
Abstract:
In a method to damp an oscillation of a roller driven via a drive in a printing system, a printing substrate web is directed across the roller, the roller and the printing substrate web forming a system capable of vibrating. With the drive the roller is driven with a predetermined nominal moment. With a sensor, a real value is determined of a variable representative of a velocity with which the printing substrate web is transported by the roller. In aid of a predetermined calculation rule, a correction moment is calculated from the determined real value such that a damping of the vibration-capable system results like a mechanical viscous damper. The correction moment is added to the predetermined nominal moment upon activation of the drive.