Abstract:
A piston for an internal combustion engine has an upper crown portion with a pair of pin bosses depending therefrom, wherein the pin bosses have pin bores axially aligned along a central pin bore axis. A pair of laterally spaced skirt portions are fixedly attached to the pin bosses and depend to a lowermost free edge. At least one of the skirt portions has a recess extending upwardly from the lowermost free edge beyond the central axis of the pin bores.
Abstract:
A sensor device for detecting at least one flow property of a fluid medium, including at least one sensor housing, in which at least one electronic module having at least one flow sensor for detecting the flow property is accommodated. At least one pressure sensor and at least one humidity sensor are accommodated inside the sensor housing, at least the pressure sensor and optionally also the humidity sensor is situated inside the sensor housing independently of the electronic module.
Abstract:
A piston for an internal combustion engine has an upper crown portion with a pair of pin bosses depending therefrom, wherein the pin bosses have pin bores axially aligned along a central pin bore axis. A pair of laterally spaced skirt portions are fixedly attached to the pin bosses and depend to a lowermost free edge. At least one of the skirt portions has a recess extending upwardly from the lowermost free edge beyond the central axis of the pin bores.
Abstract:
A connecting rod for a piston assembly includes first and second guidance members for guiding a piston assembly within a cylinder during piston stroke along a first axis. The guidance members are supported by first and second support ribs extending from a shaft of the connecting rod and include first and second sliding surfaces for contacting side walls of the cylinder. The connecting rod includes an attachment boss disposed at a first end of the shaft and defines a second axis perpendicular to the first axis. The first and second support ribs extend radially outwardly from the attachment boss and are spaced radially about the second axis by approximately 180 degrees.
Abstract:
The present invention relates to processes for application of a metal layer on a substrate via deposition of a metal from a metal salt solution by a chemical and/or electroplating method, a significant factor in these processes being that carbon nanotubes are present in the substrate surface. The present invention moreover relates to the use of carbon nanotubes for application of a metal layer on a substrate.
Abstract:
The invention relates to a device for the electrolytic coating of at least one electrically conductive substrate or a structured or full-surface electrically conductive surface on a nonconductive substrate, which comprises at least one bath, one anode and one cathode, the bath containing an electrolyte solution containing at least one metal salt, from which metal ions are deposited on electrically conductive surfaces of the substrate to form a metal layer while the cathode is brought in contact with the substrate's surface to be coated and the substrate is transported through the bath, wherein the cathode comprises at least two disks (2, 4, 10) mounted on a respective shaft (1, 5, 14) so that they can rotate, the disks (2, 4, 10) engaging in one another. The invention furthermore relates to a method for the electrolytic coating of at least one substrate, which is carried out in a device according to the invention. Lastly, the invention also relates to a use of the device according to the invention for the electrolytic coating of electrically conductive structures on an electrically nonconductive support.
Abstract:
The present invention relates to alkyne compounds of the formula I P1—Y1-A1-Y3-(T1-B1-)m-T3-C≡C-T4-(B2-T2-)n-Y4-A2-Y2—P2 (I) in which P1, P2 are each, independently of one another, hydrogen, C1-C12-alkyl, a polymerizable group or a group suitable for polymerization or a radical which carries a polymerizable group or a group suitable for polymerization, Y1, Y2, Y3, Y4 are each, independently of one another, a linking unit, B1, B2 are each, independently of one another, —C≡C— or a linking group as defined for Y1 to Y4, A1, A2 are each, independently of one another, a single chemical bond or a spacer having from one to 30 carbon atoms, T1, T2, T3, T4 are each, independently of one another, a divalent saturated or unsaturated carbocyclic or heterocyclic radical, and m, n are each, independently of one another, 0 or 1, with the proviso that at least one of the linking units Y3 or Y4 is a group —O—CO—O—, —O—CO—N(R)—, —(R)N—CO—O— or —(R)N—CO—N(R)—. The invention further relates to nonpolymerizable and polymerizable liquid-crystalline compositions comprising at least one alkyne compound of the formula I according to the invention, the use of these nonpolymerizable and polymerizable liquid-crystalline compositions for producing optical components, the use of the polymerizable liquid-crystalline compositions for printing or coating substrates, for preparing dispersions and emulsions, for producing films and pigments and optical components, printed or coated substrates, dispersions and emulsions, films and pigments of this type.
Abstract:
Pulverulent coating materials composed of (A) leaflet-shaped particles having a ratio of laminar diameter D to layer thickness d, i.e., D:d of from 100:1 to 10:1, comprising at least one leaflet-shaped effect pigment in complete or near-complete parallel orientation to the surface of the leaflet-shaped particles, and (B) transparent, dimensionally stable, non-leaflet-shaped particles or leaflet-shaped particles having a ratio of laminar diameter D to layer thickness d, i.e., D:d of
Abstract:
A clamping device with overload protection and a process to connect both elements, which are to be connected, whereby the clamping device is fitted with an element to be connected first, an element to be connected second, which is connected to the first element, and a bracing bolt to connect. In order to ensure effective overload protection, the clamping device contains a sleeve, which is connected with the second element to be connected through the bracing bolt, and which runs through the first element to be connected, and a sleeve tensioning device, which is engaged with the sleeve, and which clamps the first element to be connected with the second element to be connected, whereby the bracing bolt is stretched to a predetermined stress level in relation to its elastic limit, whereby the sleeve is released of tension up to a predetermined release level, and a transgression of the operating force, which separates the two elements to be connected, leads—beyond an operating force limit—to a stress release of the sleeve relative to the clamping, by the bracing bolt, and to a breaking of the bracing bolt.
Abstract:
A compression generator uses a plurality of jackbolts threadedly engaged at a spaced apart relation about a bolt circle in a main core element. The main core element is releasable interlocked by threads, bayonet connection or other form of fasting system with the mounting element forming a fixed part of the mechanical connection. The jackbolts torqued to generate a pushing force in an axial direction for compressing a moveable part of the mechanical connection against a compression seat for forming a mechanical connection between juxtaposition fixed and moveable parts.