Abstract:
A method and apparatus for selectively disabling sense amplifiers to reduce power consumption in a memory bus interface are disclosed. The method includes amplifying data signals from a memory bus interface. The amplified data signals are sampled, and the amplifier is selectively disabled in response to the absence or end of a predetermined operation occurring over the memory bus. In some embodiments of the invention, the amplification may be selectively enabled in response to the beginning of the predetermined operation over the memory bus. According to some embodiments, the disabling of the amplification may be synchronized to an edge of a delayed data strobe signal. In some embodiments, signals associated with a double data rate (“DDR”) synchronous dynamic random access memory (“SDRAM”) device may be communicated over the memory bus.
Abstract:
A technique includes amplifying data signals from a memory bus interface. The amplified data signals are sampled, and the amplifier is selectively disabled in response to the absence of a predetermined operation occurring over the memory bus. In some embodiments of the invention, the amplification may be selectively enabled in response to the beginning of the predetermined operation over the memory bus.
Abstract:
A technique includes amplifying data signals from a memory bus interface. The amplified data signals are sampled, and the amplifier is selectively disabled in response to the absence of a predetermined operation occurring over the memory bus. In some embodiments of the invention, the amplification may be selectively enabled in response to the beginning of the predetermined operation over the memory bus.
Abstract:
A technique includes amplifying data signals from a memory bus interface. The amplified data signals are sampled, and the amplifier is selectively disabled in response to the absence of a predetermined operation occurring over the memory bus. In some embodiments of the invention, the amplification may be selectively enabled in response to the beginning of the predetermined operation over the memory bus.
Abstract:
A method is described that involves driving a first current through a line and a termination resistance so that a logical value on the line changes from a first logical value to a second logical value. The method also includes holding the second logical value on the line by driving a second current through the line and the termination resistance where the second current less than the first current. An apparatus is described that includes a driver that drives a first current through a line and a termination resistance so that a logical value on the line changes from a first logical value to a second logical value. The driver holds the second logical value on the line by driving a second current through the line and the termination resistance. The second current is less than said first current.
Abstract:
A method is described that involves driving a first current through a line and a termination resistance so that a logical value on the line changes from a first logical value to a second logical value. The method also includes holding the second logical value on the line by driving a second current through the line and the termination resistance where the second current less than the first current. An apparatus is described that includes a driver that drives a first current through a line and a termination resistance so that a logical value on the line changes from a first logical value to a second logical value. The driver holds the second logical value on the line by driving a second current through the line and the termination resistance. The second current is less than said first current.
Abstract:
A circuit for driving and receiving signals on a bus line includes a pull-up switch and a pull-down switch. The pull-up switch has an impedance that matches the characteristic impedance of the bus line. The pull-down switch has an impedance of about half of the characteristic impedance of the bus line. When the circuit is receiving a signal or driving a logic high signal on the bus line, the pull-up switch is enabled so that the bus line voltage is pulled up, while the pull-down switch is disabled to prevent the pull-down switch from pulling down the bus line voltage. When the circuit is driving a logic low signal on the bus line, the pull-down switch is enabled so that the bus line voltage is pulled down, while the pull-up switch is disabled to prevent the pull-up switch from pulling up the bus line voltage.
Abstract:
A technique includes amplifying data signals from a memory bus interface. The amplified data signals are sampled, and the amplifier is selectively disabled in response to the absence of a predetermined operation occurring over the memory bus. In some embodiments of the invention, the amplification may be selectively enabled in response to the beginning of the predetermined operation over the memory bus.