摘要:
A method is disclosed for communicating network quality of service policy information to a plurality of policy enforcement points. Active QoS configuration information is created and stored at a policy enforcement point, such as a router in a network. New configuration information is received and stored as an inactive configuration of the policy enforcement point. The policy enforcement point determines whether the inactive configuration information is properly functional in combination with the active QoS configuration information. The new configuration information is made active in place of the active QoS configuration information only in response to receiving an activation message. An inactive configuration may be signaled by a COPS protocol decision message from the policy decision point that identifies the configuration information as an inactive configuration by a specified flag bit in a message type value in a Context object that forms part of the decision message. Using the method, network quality of service policy information may be communicated to a plurality of policy enforcement points, with assurance that all receiving policy enforcement points can successfully deploy the configuration information. As a result, new QoS policy configuration information can be deployed to an entire network or to a large plurality of devices with assurance that all such information is received and deployed without adverse effects on the network or enforcement of policy information.
摘要:
A method, apparatus, and computer-readable medium configured for maintaining consistent per-hop packet forwarding behavior among a plurality of network devices in a network within a Differentiated Services (DS) domain are disclosed. In one aspect, a method involves creating and storing a network-wide PHB definition that associates a PHB with a DS code point (DSCP) value, and with a set of parameters that define the bandwidth and buffer resources allocated to the PHBs on all interfaces of network devices within the DS domain. A mapping of each of the PHBs in the network-wide PHB definition to one or more queues of the network devices is determined. Drain size and queue size values are determined for each of the queues to which PHBs are mapped. A mapping of each of the PHBs to a threshold value associated with the queues is determined. Parameters of fragmentation and interleave mechanisms are determined. Network device configuration parameter values based on the mappings, the drain size, and the queue size, etc. are sent to each of the network devices within the DS domain. As a result, consistent PHB is achieved throughout a network using abstract definitions of PHBs.
摘要:
A method, apparatus, and computer-readable medium configured for maintaining consistent per-hop packet forwarding behavior among a plurality of network devices in a network within a Differentiated Services (DS) domain are disclosed. In one aspect, a method involves creating and storing a network-wide PHB definition that associates a PHB with a DS code point (DSCP) value, and with a set of parameters that define the bandwidth and buffer resources allocated to the PHBs on all interfaces of network devices within the DS domain. A mapping of each of the PHBs in the network-wide PHB definition to one or more queues of the network devices is determined. Drain size and queue size values are determined for each of the queues to which PHBs are mapped. A mapping of each of the PHBs to a threshold value associated with the queues is determined. Parameters of fragmentation and interleave mechanisms are determined. Network device configuration parameter values based on the mappings, the drain size, and the queue size, etc. are sent to each of the network devices within the DS domain. As a result, consistent PHB is achieved throughout a network using abstract definitions of PHBs.
摘要:
A method, apparatus, and computer-readable medium configured for maintaining consistent per-hop packet forwarding behavior among a plurality of network devices in a network within a Differentiated Services (DS) domain are disclosed. In one aspect, a method involves creating and storing a network-wide PHB definition that associates a PHB with a DS code point (DSCP) value, and with a set of parameters that define the bandwidth and buffer resources allocated to the PHBs on all interfaces of network devices within the DS domain. A mapping of each of the PHBs in the network-wide PHB definition to one or more queues of the network devices is determined. Drain size and queue size values are determined for each of the queues to which PHBs are mapped. A mapping of each of the PHBs to a threshold value associated with the queues is determined. Parameters of fragmentation and interleave mechanisms are determined. Network device configuration parameter values based on the mappings, the drain size, and the queue size, etc. are sent to each of the network devices within the DS domain. As a result, consistent PHB is achieved throughout a network using abstract definitions of PHBs.