摘要:
The conductive porous layer for batteries according to the present invention comprises a laminate comprising a first conductive layer and a second conductive layer. The first conductive layer includes at least a conductive carbon material and a polymer. The second conductive layer includes at least a conductive carbon material and a polymer. The conductive porous layer satisfies at least one of the following two conditions: “the polymer in the first conductive layer is present with a high density at the surface of the layer in contact with the second conductive layer than at the surface not in contact with the second conductive layer” and “the polymer in the second conductive layer is present with a higher density at the surface of the layer in contact with the first conductive layer than at the surface not in contact with the first conductive layer.”
摘要:
A pattern inspection method and apparatus are provided for sequentially imaging plural chips formed on a substrate to be inspected to and obtaining inspection images and reference images, calculating a position gap between the inspection images and the reference images using a recipe created in advance by using another substrate of the same kind or type as the substrate, the recipe including information for determining which pattern sections are to be selected and discarded, aligning the inspection images and the reference images using information of the position gap from the calculating step, and comparing the inspection images with the reference images aligned by the aligning step and extracting a defect candidate.
摘要:
The conductive porous layer for batteries according to the present invention comprises a laminate comprising a first conductive layer and a second conductive layer. The first conductive layer includes at least a conductive carbon material and a polymer. The second conductive layer includes at least a conductive carbon material and a polymer. The conductive porous layer satisfies at least one of the following two conditions: “the polymer in the first conductive layer is present with a high density at the surface of the layer in contact with the second conductive layer than at the surface not in contact with the second conductive layer” and “the polymer in the second conductive layer is present with a higher density at the surface of the layer in contact with the first conductive layer than at the surface not in contact with the first conductive layer.”
摘要:
A pattern inspection method including: sequentially imaging plural chip formed on a substrate; selecting at least one of pattern sections of each inspection image obtained by the imaging, while discarding other pattern sections, based on a recipe created in advance, the recipe including information for determining which pattern sections to be selected or discarded; calculating position gap between an inspection image of a chip obtained by the imaging and a reference image stored in a memory by using positional information of pattern images included in the inspection image and reference pattern images which are both corresponding to the at least one of pattern sections selected at the selecting; aligning the inspection image and the reference image by using information of the calculated position gap; and comparing the aligned inspection image with the reference image, and extracting a difference between the two images as a defect candidate.
摘要:
Disclosed is a thermoelectric conversion material that exhibits a high thermoelectric conversion properties. The thermoelectric conversion material comprises zinc oxide and is represented by formula (I): Zn(1-x-y)AlxYyO (I) wherein Zn represents zinc; Al represents aluminum; Y represents yttrium; and x>0, y>0, and x+y
摘要翻译:公开了具有高热电转换性的热电转换材料。 热电转换材料包括氧化锌,由式(I)表示:Zn(1-x-y)Al x Y y O(I)其中Zn表示锌; Al代表铝; Y代表钇; x> 0,y> 0和x + y <0.1,并且具有其中至少一部分铝和钇存在于氧化锌晶格的晶格和/或间隙位置的结构。
摘要:
A pattern inspection method and a pattern inspection apparatus, which has an improved precision in detecting and correcting the positional deviation of images for a die comparison, have been disclosed. The quantity of correction of positional deviation of the images for the die comparison is determined based on the positional information of the images at multiple separate places in a die (pattern). For example, the multiple separate places include the vicinities of both ends in the pattern arrangement to be scanned in the die, and the part where the inspection is not completed yet. When the positional information of the part where the inspection is not completed yet is used, the correction of the positional relation of the images to be compared and the comparison of the images are started immediately after the capture of the images of two patterns is completed.
摘要:
Disclosed is an appearance inspection machine comprising an image acquisition unit, a defect information production unit, and an automatic defect classification unit. The defect information production unit detects a defect by comparing two image data and produces defect information. The automatic defect classification unit autonomously classifies a defect according to image data of a defective part concerned. The defect information production unit consists of a comparison buffer memory, an image comparison unit, an analysis buffer memory, and a sampling and control unit. Image data is temporarily stored in the comparison buffer memory. The image comparison unit detects a defect by comparing image data of one die with image data of other two dice. Image data is temporarily stored in the analysis buffer memory. The sampling and control unit selects an analysis-needed part according to defect information and transfers necessary image data to the automatic defect classification unit. As soon as defect information is produced, the sampling and control unit selects an analysis-needed part and transfers necessary image data. Thus, defect detection and classification are partly carried out concurrently.
摘要:
A pattern inspection method including: sequentially imaging plural chips formed on a substrate; selecting a pattern which is suitable for calculating position gap between an inspection image of a subject chip and reference image stored in memory from an image of a firstly imaged chip among said sequentially imaged plural chips formed on the substrate; computing position gap between an inspection image of a chip obtained by the sequential imaging and reference image stored in a memory by using a positional information of a pattern image included in the inspection image and a reference pattern image included in the reference image which are both corresponding to the pattern selected at the selecting; aligning the inspection image and the reference image by using information of the calculated position gap; and comparing the aligned inspection image with the reference image and extracting a difference as a defect candidate.
摘要:
A pattern inspection method including: sequentially imaging plural chip formed on a substrate; selecting at least one of pattern sections of each inspection image obtained by the imaging, while discarding other pattern sections, based on a recipe created in advance, the recipe including information for determining which pattern sections to be selected or discarded; calculating position gap between an inspection image of a chip obtained by the imaging and a reference image stored in a memory by using positional information of pattern images included in the inspection image and reference pattern images which are both corresponding to the at least one of pattern sections selected at the selecting; aligning the inspection image and the reference image by using information of the calculated position gap; and comparing the aligned inspection image with the reference image, and extracting a difference between the two images as a defect candidate.
摘要:
Disclosed is a thermoelectric conversion material that exhibits a high thermoelectric conversion properties. The thermoelectric conversion material comprises zinc oxide and is represented by formula (I): Zn(1-x-y)AlxYyO (I) wherein Zn represents zinc; Al represents aluminum; Y represents yttrium; and x>0, y>0, and x+y
摘要翻译:公开了具有高热电转换性的热电转换材料。 热电转换材料包括氧化锌,由式(I)表示:Zn(1-x-y)Al x Y y O(I)其中Zn表示锌; Al代表铝; Y代表钇; x> 0,y> 0和x + y <0.1,并且具有其中至少一部分铝和钇存在于氧化锌晶格的晶格和/或间隙位置的结构。