Abstract:
This invention discloses an anti-charging layer for beam lithography and mask fabrication. This invention reduces beam displacement and increases pattern placement accuracy. The process will be used in the beam fabrication of high-resolution lithographic masks as well as beam direct write lithography of electronic devices. The anti-charging layer is formed by the use of metal films bound to metal ligating self-assembled monolayers (SAMs) as discharge layers.
Abstract:
The invention is directed to a process for patterning a substrate in a selective pattern. In one embodiment, the process comprises the steps of forming a patterned coating over a substrate surface whereby portions of the substrate are covered by the patterned coating and portions of the substrate remain uncoated. A layer of a ligating material is coated over at least those portions of the substrate free of the patterned coating. The ligating layer is one that is capable of ligating with an electroless metal plating catalyst. The article so formed is then contacted with an electroless metallization catalyst and then with an electroless plating solution to form a patterned metal deposit on the substrate.
Abstract:
The invention is directed to a process for patterning a substrate in a selective pattern. In one embodiment, the process comprises the steps of forming a patterned coating over a substrate surface whereby portions of the substrate are covered by the patterned coating and portions of the substrate remain uncoated. A layer of a ligating material is coated over at least those portions of the substrate free of the patterned coating. The ligating layer is one that is capable of ligating with an electroless metal plating catalyst. The article so formed is then contacted with an electroless metallization catalyst and then with an electroless plating solution to form a patterned metal deposit on the substrate.
Abstract:
A surface for the alignment of liquid crystals containing directionally-linked groups and compounds useful for preparing such surfaces are disclosed.
Abstract:
Fluoropolymeric substrates with metallized surfaces may be prepared by self-assembly of a chemisorbed layer of a metal ion-chelating organosilane onto a fluoropolymer surface after radio-frequency glow discharge plasma surface hydroxylation. The silane covalently binds an aqueous palladium catalyst and subsequent electroless deposition yields homogeneous or patterned metal deposits that exhibit excellent adhesion to the fluoropolymer.
Abstract:
This invention discloses an anti-charging layer for beam lithography and mask fabrication. This invention reduces beam displacement and increases pattern placement accuracy. The process will be used in the beam fabrication of high-resolution lithographic masks as well as beam direct write lithography of electronic devices. The anti-charging layer is formed by the use of metal films bound to metal ligating self-assembled monolayers (SAMs) as discharge layers.
Abstract:
Patterned conducting polymer surfaces exhibiting excellent properties may be prepared by:(a) forming a surface of a conducting polymer on a surface of a substrate;(b) forming a surface of a blocking material on said surface of said conducting polymer in a pattern-wise fashion, to obtain a first patterned surface containing regions of exposed conducting polymer and regions of blocking material;(c) treating said first patterned surface with an agent which: (i) removes said conducting polymer from said regions of exposed conducting polymer; (ii) decreases the conductivity of said conducting polymer in said regions of exposed conducting polymer; or (iii) increases the conductivity of said conducting polymer in said regions of exposed conducting polymer; and(d) removing said blocking material to obtain a second patterned surface containing an exposed pattern of conducting polymer.
Abstract:
Fluoropolymeric substrates with metallized surfaces may be prepared by self-assembly of a chemisorbed layer of a metal ion-chelating organosilane onto a fluoropolymer surface after radio-frequency glow discharge plasma surface hydroxylation. The silane covalently binds an aqueous palladium catalyst and subsequent electroless deposition yields homogeneous or patterned metal deposits that exhibit excellent adhesion to the fluoropolymer.