Abstract:
An artificial sunlight radiation device (10) includes a xenon light source (9), a condensing element (2), a tapered coupler (3), an optical filter (4), a light guide plate (16), a light extracting member (17), and a side-surface reflection member (15) that is provided at one or more side end surfaces of the light guide plate (16), reflects a portion of the light output from the light guide plate (16), and directs the portion of the light toward a radiation surface.
Abstract:
A radar apparatus forming a series-feed array-antenna includes an array antenna having transmission/reception antennas, and each antenna includes a plurality of antenna elements arrayed with feed-lines to be series-connected each other. A calibration line is disposed between the transmission antenna and the reception antenna via a switch which connects or disconnects the calibration line. The signal having a phase shift is transmitted via the calibration line when the switch connects the calibration line and an amount of phase shift from the signal transmitted via the calibration line is calculated based on a reference phase at the transmission antenna thereby calibrating the phase shift.
Abstract:
A light source device (10) according to the present invention includes a first light source (1) and a first condensing member (2) that has a first opening (24) and that outputs output light from the first light source (1) through the first opening (24). The first condensing member (2) is constituted of a front condensing member (2a) that includes the first opening (24) and a rear condensing member (2b) that does not include the first opening (24). The rear condensing member (2b) is detachable from the first condensing member (2).
Abstract:
A radar system includes an arithmetic processing unit, which sends a warning command to a warning device when a local minimum point of the intensity of the reflected wave from a target within a predetermined detection range is detected. By determining whether it is necessary to send a warning command based on whether there is a local minimum point of the intensity within the detection range, it is made possible to determine whether it is necessary to send a warning command more quickly as compared to the conventional system.
Abstract:
An obstacle detection device includes; a primary device that determines the presence or absence of the target object on the basis of a comparison between the transmitted wave and the reception wave; a storage device that, when it is determined that the object is present, acquires a reception power of the reception wave at a control period determined beforehand, and stores the reception power as reception power time series data; a secondary device that determines whether a value relating to a time series change pattern of the data falls within a predetermined range set beforehand on the basis of phase interference, of the reception wave, that depends on a height of the object from a road; and a output device that determines the object to be an obstacle and outputs a result of this determination, when it is determined that the value relating to the pattern falls within the range.
Abstract:
A radar system includes radars and a controller. The controller controls waveform patterns of the radars. As a signal processing unit of each of the radars receives an instruction from the controller, the signal processing unit selects a frequency modulation pattern of a VCO between an FM-CW mode and a CW mode stored in a waveform memory to perform mode switching, and then outputs a radio wave from a transmission antenna. Then, the controller instructs each signal processing unit for a frequency modulation pattern of each radar or an output timing of each pattern so that a time, at which continuous wave signals output from the radars have the same frequency, is not continuous.
Abstract:
A radar system includes radars and a controller. The controller controls waveform patterns of the radars. As a signal processing unit of each of the radars receives an instruction from the controller, the signal processing unit selects a frequency modulation pattern of a VCO between an FM-CW mode and a CW mode stored in a waveform memory to perform mode switching, and then outputs a radio wave from a transmission antenna. Then, the controller instructs each signal processing unit for a frequency modulation pattern of each radar or an output timing of each pattern so that a time, at which continuous wave signals output from the radars have the same frequency, is not continuous.
Abstract:
In an integrated optical unit of the present invention, a photo detector (12) and a holding member (17) that sustains a semiconductor laser (11) are provided on a polarizing beam splitter (14). This makes it possible to reduce a deviation from a designed value due to tolerance, and adjust a relative positional relationship between the semiconductor laser (11) and the photo detector (12). Therefore, returned light from an optical disk (4) is accurately adjusted with respect to a division line of a photo-detecting device (13). As a result, stable servo-control is realized, and an information signal with fine quality is obtained.
Abstract:
An optical integrated unit according to the present invention is an optical integrated unit, including: a semiconductor laser acting as a light source; at least one light-receiving element; a light-separating section for separating light emitted by the semiconductor laser from light reflected by an optical disc and for reflecting the light reflected by the optical disc so that the light reflected by the optical disc is directed to the light-receiving element; and a support substrate, wherein a second support substrate has a concave shape, the light-separating section is constituted of at least three prisms, the prisms positioned at both ends of the light-separating section are respectively attached to two protruding sections of the concave shape of the second support substrate, and the light-receiving element is attached to the light-separating section via a cover glass. As a result, it is possible to solve such a problem that the light-receiving element cannot be adjusted with high accuracy because of a thickness error of the support substrate or an intermediate substrate in conventional techniques.
Abstract:
A feed probe (1), a semicylindrical sub-reflector (2) forming a primary radiator together with the feed probe (1), and a main reflector (3) arranged such that mirror surfaces of said main reflector (3) and the sub-reflector face across the feed probe (1) are all disposed on a ground plate (a recfector face) (4). The main reflector (3) has a predetermined focal point or focal line on which the feed probe (1) is located, and is mounted on the ground plate (4) at a predetermined installation angle θ. A converter (500) for converting linearly and circularly polarized waves is provided on the mirror surface of the main reflector (3). The converter (500) is composed of a plurality of grooves (510) and ridges (512) formed between the grooves, so that a wave component orthogonal to the grooves is reflected at the bottom of the grooves while a wave component parallel to the grooves is reflected on the ridge surface, thereby causing a phase difference according to the height H of the grooves when a radio wave is reflected on the main reflector to thereby perform linear to circular polarization conversion.