摘要:
An energy storage device having high capacity per weight or volume and a positive electrode active material for the energy storage device are manufactured. A surface of a main material included in the positive electrode active material for the energy storage device is coated with two-dimensional carbon. The main material included in the positive electrode active material is coated with a highly conductive material which has a structure expanding two-dimensionally and whose thickness is ignorable, whereby the amount of carbon coating can be reduced and an energy storage device having capacity close to theoretical capacity can be obtained even when a conduction auxiliary agent is not used or the amount of the conduction auxiliary agent is extremely small. Accordingly, the amount of carbon coating in a positive electrode and the volume of the conduction auxiliary agent can be reduced; consequently, the volume of the positive electrode can be reduced.
摘要:
A power storage device comprising a positive electrode which includes in a positive electrode active material layer, lithium iron phosphate particles whose surface is supported by a carbon material and whose half width of the X-ray diffraction peak is less than or equal to 0.17°, or greater than or equal to 0.13° and less than or equal to 0.165′ or whose particle size is greater than or equal to 20 nm and less than 50 nm or greater than or equal to 30 nm and less than 40 nm; or a method for manufacturing a power storage device comprising the steps of mixing the lithium iron phosphate particles, a conduction auxiliary agent, and a binder so as to be a paste, and applying the paste on a current collector, thereby manufacturing a positive electrode.
摘要:
A power storage device including a positive electrode having a positive electrode active material and a positive electrode current collector; and a negative electrode which faces the positive electrode with an electrolyte provided between the negative electrode and the positive electrode is provided. The positive electrode active material includes a first region which includes a phosphate compound containing lithium and nickel; and a second region which covers the first region and includes a compound containing lithium and one or more of iron, manganese, and cobalt, but not containing nickel. Since the entire superficial portion of a particle of the positive electrode active material does not contain nickel, nickel is not in contact with an electrolyte solution; thus, generation of a catalyst effect of nickel can be suppressed, and a high discharge potential of nickel can be utilized.
摘要:
An energy storage device having high capacity per weight or volume and a positive electrode active material for the energy storage device are manufactured. A surface of a main material included in the positive electrode active material for the energy storage device is coated with two-dimensional carbon. The main material included in the positive electrode active material is coated with a highly conductive material which has a structure expanding two-dimensionally and whose thickness is ignorable, whereby the amount of carbon coating can be reduced and an energy storage device having capacity close to theoretical capacity can be obtained even when a conduction auxiliary agent is not used or the amount of the conduction auxiliary agent is extremely small. Accordingly, the amount of carbon coating in a positive electrode and the volume of the conduction auxiliary agent can be reduced; consequently, the volume of the positive electrode can be reduced.
摘要:
As a positive electrode active material, a material which is represented by the general formula Li(2-x)M1yM2zSiO4 and satisfies the conditions (I) to (IV) is used: (I) x is a value which changes due to insertion and extraction of a lithium ion during charging and discharging, and satisfies 0≦x
摘要翻译:作为正极活性物质,使用由通式Li(2-x)M1yM2zSiO4表示且满足条件(I)〜(IV)的材料:(I)x是由于插入而变化的值, 在充放电期间提取锂离子,满足0 @ x <2; (II)M1是选自铁(Fe),镍(Ni),锰(Mn)和钴(Co)中的一种或多种过渡金属原子; (III)M2是钛(Ti),钪(Sc)或镁(Mg)的金属原子; 和(IV)满足公式y + z = 1,0
摘要:
In a manufacturing process of a positive electrode active material for a power storage device, which includes a lithium silicate compound represented by a general formula Li2MSiO4, heat treatment is performed at a high temperature on a mixture material, grinding treatment is performed, a carbon-based material is added, and then heat treatment is performed again. Therefore, the reactivity between the substances contained in the mixture material is enhanced, favorable crystallinity can be obtained, and further microparticulation of the grain size of crystal which is grown larger by the high temperature treatment and crystallinity recovery are achieved; and at the same time, carbon can be supported on the surfaces of particles of the crystallized mixture material. Accordingly, a positive electrode active material for a power storage device, in which electron conductivity is improved, can be manufactured.
摘要:
An object is to provide an electrode material with high electrical conductivity and a power storage device using the electrode material. An object is to provide an electrode material with high capacity and a power storage device using the electrode material. Provided is a particulate electrode material including a core containing a compound represented by a general formula Li2MSiO4 (in the formula, M represents at least one kind of an element selected from Fe, Co, Mn, and Ni) as a main component, and a covering layer containing a compound represented by a general formula LiMPO4 as a main component and covering the core. Further, a solid solution material is provided between the core and the covering layer. With such a structure, an electrode material with high electrical conductivity can be obtained. Further, with such an electrode material, a power storage device with high discharge capacity can be obtained.
摘要:
A method for synthesizing alkali metal silicate which can be easily microparticulated, a method for synthesizing, with the use of the alkali metal silicate, alkali transition metal silicate, and alkali metal silicate and alkali transition metal silicate which are synthesized by the synthesis methods are disclosed. The alkali metal silicate is synthesized by the following steps: forming a basic solution including an alkali metal salt; mixing the basic solution including the alkali metal salt with silicon particles to form a basic solution including the alkali metal silicate; and adding the basic solution including the alkali metal silicate to a poor solvent for the alkali metal silicate to precipitate the alkali metal silicate. Further, the alkali metal silicate is mixed with a microparticulated compound including a transition metal to form a mixture, and the mixture is subjected to heat treatment, whereby the alkali transition metal silicate is generated.
摘要:
As a positive electrode active material, a material which is represented by the general formula Li(2-x)M1yM2zSiO4 and satisfies the conditions (I) to (IV) is used:(I) x is a value which changes due to insertion and extraction of a lithium ion during charging and discharging, and satisfies 0≦x
摘要翻译:作为正极活性物质,使用由通式Li(2-x)M1yM2zSiO4表示且满足条件(I)〜(IV)的材料:(I)x是由于插入而变化的值, 充电和放电期间提取锂离子,满足0&nlE; x <2; (II)M1是选自铁(Fe),镍(Ni),锰(Mn)和钴(Co)中的一种或多种过渡金属原子; (III)M2是钛(Ti),钪(Sc)或镁(Mg)的金属原子; 和(IV)满足公式y + z = 1,0
摘要:
A power storage device includes a positive electrode including a positive electrode current collector and a positive electrode active material having an olivine structure which is represented by a structural formula LiFexMe1-xPO4 (Me=Mn, Ni, or Co) (x is greater than 0 and less than 1) over the positive electrode current collector, or a power storage device includes a positive electrode including a positive electrode current collector and a positive electrode active material, and a negative electrode which faces the positive electrode through an electrolyte, where discharging capacitance is greater than or equal to 150 mAh/g and energy density per unit weight is higher than or equal to 500 mWh/g.