摘要:
Methods and systems are described to automatically lock and unlock a front axle disconnect mechanism in an all-wheel drive (AWD) system responsive to driving conditions to reduce parasitic losses and increase fuel efficiency. A control algorithm is described which automatically determines whether the front axle disconnect mechanism should lock or unlock responsive to various sensor readings throughout the vehicle. The sensor readings relate to the driving conditions. Advantageously, the present disclosure automatically decides the best mode for optimum fuel economy while safely responding to driving conditions, and therefore removes the requirement for a driver to select the operating mode.
摘要:
Methods and systems are described to automatically lock and unlock a front axle disconnect mechanism in an all-wheel drive (AWD) system responsive to driving conditions to reduce parasitic losses and increase fuel efficiency. A control algorithm is described which automatically determines whether the front axle disconnect mechanism should lock or unlock responsive to various sensor readings throughout the vehicle. The sensor readings relate to the driving conditions. Advantageously, the present disclosure automatically decides the best mode for optimum fuel economy while safely responding to driving conditions, and therefore removes the requirement for a driver to select the operating mode.
摘要:
The present disclosure provides systems and methods to detect and reduce any high driveline torsional levels, such as due to the cylinder deactivation in variable displacement system engines or aggressive lock-up strategies for fuel efficiency, in automobile transmissions. The present disclosure utilizes a controller in an automobile to operate a computationally thrifty method for quickly detecting noise and vibration disturbances in the transmission. This quick detection enables fuel economic calibrations that aggressively reduce the disturbances by controlling slip in a launch device of the transmission. As problem disturbances arise, they are detected before occupants notice objectionable behavior. Once detected, the disturbances are reduced, such as by increasing launch device slip, which effectively intercepts the objectionable disturbances before they are transferred through the entire drivetrain. The present disclosure can also apply to launch devices in Dual Clutch Transmissions and Electronically-controlled Manual Transmissions.
摘要:
The present disclosure provides systems and methods to detect and reduce any high driveline torsional levels, such as due to the cylinder deactivation in variable displacement system engines or aggressive lock-up strategies for fuel efficiency, in automobile transmissions. The present disclosure utilizes a controller in an automobile to operate a computationally thrifty method for quickly detecting noise and vibration disturbances in the transmission. This quick detection enables fuel economic calibrations that aggressively reduce the disturbances by controlling slip in a launch device of the transmission. As problem disturbances arise, they are detected before occupants notice objectionable behavior. Once detected, the disturbances are reduced, such as by increasing launch device slip, which effectively intercepts the objectionable disturbances before they are transferred through the entire drivetrain. The present disclosure can also apply to launch devices in Dual Clutch Transmissions and Electronically-controlled Manual Transmissions.