Electrode structure of vanadium redox flow battery
    2.
    发明授权
    Electrode structure of vanadium redox flow battery 有权
    钒氧化还原液电池的电极结构

    公开(公告)号:US08808897B2

    公开(公告)日:2014-08-19

    申请号:US13185919

    申请日:2011-07-19

    CPC classification number: H01M8/188 H01M4/96 Y02E60/528

    Abstract: An electrode structure of a vanadium redox flow battery is disclosed, which includes a proton-exchange membrane, two graphite papers, two graphite felt units, two pads, two graphite polar plates, two metal plates and a lock-fixing device which are symmetrically stacked in sequence from center to outside. wherein each graphite polar plate has the flow channels with a grooved structure, and each graphite felt unit is embedded in the flow channels of one of the graphite polar plates, and then the graphite felt units are covered by the graphite papers such that the different electrolytes flow in their corresponding flow channels. The storage tanks of vanadium electrolyte are connected through the connection pipelines, and the redox reaction is performed through the flows of the vanadium electrolyte. The electrode structure of the vanadium redox flow battery can be stacked for forming a large-scale electrode structure to increase the electrical power.

    Abstract translation: 公开了一种钒氧化还原液流电池的电极结构,其包括对称堆叠的质子交换膜,两个石墨纸,两个石墨毡单元,两个垫,两个石墨极板,两个金属板和锁定固定装置 从中到外。 其中每个石墨极板具有带沟槽结构的流动通道,并且每个石墨毡单元嵌入在一个石墨极板的流动通道中,然后石墨纸覆盖石墨纸,使得不同的电解质 流入其相应的流量通道。 钒电解液的储罐通过连接管道连接,氧化还原反应通过钒电解液的流动进行。 可以层叠钒氧化还原液流电池的电极结构以形成大规模的电极结构以增加电力。

    ELECTRODE STRUCTURE OF VANADIUM REDOX FLOW BATTERY
    3.
    发明申请
    ELECTRODE STRUCTURE OF VANADIUM REDOX FLOW BATTERY 有权
    VANADIUM REDOX流量电池的电极结构

    公开(公告)号:US20130022846A1

    公开(公告)日:2013-01-24

    申请号:US13185919

    申请日:2011-07-19

    CPC classification number: H01M8/188 H01M4/96 Y02E60/528

    Abstract: An electrode structure of a vanadium redox flow battery is disclosed, which includes a proton-exchange membrane, two graphite papers, two graphite felt units, two pads, two graphite polar plates, two metal plates and a lock-fixing device which are symmetrically stacked in sequence from center to outside. wherein each graphite polar plate has the flow channels with a grooved structure, and each graphite felt unit is embedded in the flow channels of one of the graphite polar plates, and then the graphite felt units are covered by the graphite papers such that the different electrolytes flow in their corresponding flow channels. The storage tanks of vanadium electrolyte are connected through the connection pipelines, and the redox reaction is performed through the flows of the vanadium electrolyte. The electrode structure of the vanadium redox flow battery can be stacked for forming a large-scale electrode structure to increase the electrical power.

    Abstract translation: 公开了一种钒氧化还原液流电池的电极结构,其包括对称堆叠的质子交换膜,两个石墨纸,两个石墨毡单元,两个垫,两个石墨极板,两个金属板和锁定固定装置 从中到外。 其中每个石墨极板具有带沟槽结构的流动通道,并且每个石墨毡单元嵌入在一个石墨极板的流动通道中,然后石墨纸覆盖石墨纸,使得不同的电解质 流入其相应的流量通道。 钒电解液的储罐通过连接管道连接,氧化还原反应通过钒电解液的流动进行。 可以层叠钒氧化还原液流电池的电极结构以形成大规模的电极结构以增加电力。

    Synthesis of composite nanofibers for applications in lithium batteries
    6.
    发明授权
    Synthesis of composite nanofibers for applications in lithium batteries 有权
    用于锂电池的复合纳米纤维的合成

    公开(公告)号:US07323218B2

    公开(公告)日:2008-01-29

    申请号:US10419167

    申请日:2003-04-21

    Abstract: Methods of fabricating one-dimensional composite nanofiber on a template membrane with porous array by chemical or physical process are disclosed. The whole procedures are established under a base concept of “secondary template”. First of all, tubular first nanofibers are grown up in the pores of the template membrane. Next, by using the hollow first nanofibers as the secondary templates, second nanofibers are produced therein. Finally, the template membrane is removed to obtain composite nanofibers. Showing superior performance in weight energy density, current discharge efficiency and irreversible capacity, the composite nanofibers are applied to extensive scopes like thin-film battery, hydrogen storage, molecular sieving, biosensor and catalyst support in addition to applications in lithium batteries.

    Abstract translation: 公开了通过化学或物理方法在具有多孔阵列的模板膜上制造一维复合纳米纤维的方法。 整个程序在“二级模板”的基本概念下建立。 首先,管状第一纳米纤维在模板膜的孔中长大。 接下来,通过使用中空的第一纳米纤维作为第二模板,在其中制造第二纳米纤维。 最后,除去模板膜,得到复合纳米纤维。 在体重能量密度,电流放电效率和不可逆容量方面表现出优异的性能,除了在锂电池中的应用之外,复合纳米纤维还应用于薄膜电池,储氢,分子筛,生物传感器和催化剂支持等广泛的范围。

Patent Agency Ranking