Abstract:
A communication device includes a storage unit that stores a predetermined eye mask pattern indicating a receivable range, a receiving unit that receives data from the other communication device, a waveform comparing unit for comparing a waveform of the received data with the eye mask pattern to generate comparison result data and a transmission unit for transmitting the comparison result data to the other communication device.
Abstract:
An equalizer characteristics optimizing method includes acquiring a recovery clock timing from a reception signal; acquiring a predetermined sampling clock timing with respect to the recovery clock timing; latching the reception signal at the recovery clock timing; latching the reception signal at the sampling clock timing; comparing logic values obtained in the latching steps; collecting, after changing a characteristics setting of an equalizer, logic value comparison result data by repeating the recovery clock acquiring step, the acquiring of the sampling clock timing, the latching of the reception signal at the individual clock timings, and the comparing of the logic values, using the changed characteristics setting; and determining an optimum characteristics setting of an equalizer based on the collected logic value comparison result data.
Abstract:
A power reception device utilizing non-contact power transmission causes a PMOS transistor as a switch circuit to be turned ON when a secondary battery is in a heavy-load state to form a path which bypasses a series regulator (LDO) as a power supply circuit, and supplies a charging current to the secondary battery through the bypass path. An offset may be provided between ON/OFF control threshold values of the PMOS transistor. The series regulator (LDO) may be entirely or partially set in a non-operating state when forming the bypass path.
Abstract:
A power-receiving-side control circuit of a power reception device performs intermittent load modulation by causing an NMOS transistor to be turned ON/OFF during normal power transmission. A power-transmission-side control circuit included in a power transmission control device of a power transmission device monitors, an intermittent change in the load of the power reception device during normal power transmission. The power-transmission-side control circuit determines that a foreign object has been inserted between a primary coil and a secondary coil and stops power transmission when an intermittent change in load cannot be detected. The amount of power supplied to the load may be compulsorily reduced when the load state of the load is heavy.
Abstract:
According to an aspect of the invention, an electronic apparatus including: an outer case; an inner case corresponding to the outer case; an engagement nail having a first nail face directed to a first direction from the outer case toward the inner case and a second nail face directed to a second direction from the inner case toward the outer case, the engagement nail being extend from the outer case; and a resilient wire disposed on a certain position on the inner case along an edge of the inner case, the certain position corresponding to the engagement nail, wherein, at a first state, the resilient wire is movable in a third direction from the edge toward the resilient wire by the first nail face pushing the resilient wire, and wherein, at a second state, the resilient wire is movable in a fourth direction from the resilient wire toward the edge to run on the second nail face.
Abstract:
A coil module apparatus is provided. The coil module apparatus includes a flat coil, a circuit board, a magnetic sheet, connection terminals, and a case. The flat coil has a flat shape. The circuit board is used for the flat coil. The magnetic sheet is provided so as to cover one surface portion of the flat coil. The connection terminals are provided for connecting the flat coil and the circuit board. The case encloses the flat coil, the circuit board, and the magnetic sheet and encloses the connection terminals so that the connection terminals are partly exposed.
Abstract:
The transmission control unit of the device transmits sample data while changing the setting of output amplitude and emphasis of the transmitter within a prescribed range. The transmission processing unit of the device generates an eye diagram from the sample data received by the receiver, detects receivable phase-range data from the eye diagram, and transmits the same. The optimization processing unit of the device writes the phase-range data transmitted from the device into the table in correspondence to the output amplitude and emphasis of which the setting has been changed, determines optimum values of output amplitude and emphasis from the table obtained upon the completion of setting change within the prescribed range, and sets the same in the transmitter of the device. Then, the device, serving as the transmitting side, determines optimum values of output amplitude and emphasis of the transmitter and sets the same.
Abstract:
An equalizer characteristics optimizing method includes acquiring a recovery clock timing from a reception signal; acquiring a predetermined sampling clock timing with respect to the recovery clock timing; latching the reception signal at the recovery clock timing; latching the reception signal at the sampling clock timing; comparing logic values obtained in the latching steps; collecting, after changing a characteristics setting of an equalizer, logic value comparison result data by repeating the recovery clock acquiring step, the acquiring of the sampling clock timing, the latching of the reception signal at the individual clock timings, and the comparing of the logic values, using the changed characteristics setting; and determining an optimum characteristics setting of an equalizer based on the collected logic value comparison result data.
Abstract:
According to one embodiment, an electronic apparatus includes: an outer case formed of a thin metal plate and having a front plate and side plates surrounding the front plate, the side plate having a protrusion formed by bending an edge of the side plates inward of the outer case to prevent exposing the edge to exterior of the electronic apparatus; a middle member formed of a resin material and formed correspondingly to an inner surface of the outer case, the middle member having a side member that confronts the side plate, the side member having a retaining portion to engage with the protrusion; and a casing having a support portion and configured to confront an inside of the side member to keep the protrusion engaged with the retaining portion by preventing the side member from deflection.
Abstract:
A power reception device utilizing non-contact power transmission causes a PMOS transistor as a switch circuit to be turned ON when a secondary battery is in a heavy-load state to form a path which bypasses a series regulator (LDO) as a power supply circuit, and supplies a charging current to the secondary battery through the bypass path. An offset may be provided between ON/OFF control threshold values of the PMOS transistor. The series regulator (LDO) may be entirely or partially set in a non-operating state when forming the bypass path.