摘要:
The present disclosure is directed toward solutions, transparent films prepared from aromatic copolyamides, and a display element, an optical element or an illumination element using the solutions and/or the films. The copolyamides, which contain pendant carboxylic groups are solution cast into films using cresol, xylene, N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP), dimethylsulfoxide (DMSO), or butyl cellosolve or other solvents or mixed solvent which has more than two solvents. When the films are thermally cured at temperatures near the copolymer glass transition temperature, after curing, the polymer films display transmittances >80% from 400 to 750 nm, have coefficients of thermal expansion of less than 20 ppm, and are solvent resistant.
摘要:
A transparent composite sheet that has a small linear expansion coefficient, excellent transparency/heat resistance, minimal optical anisotropy, and a high degree of flatness, and that also has excellent impact resistance and flexibility; and a substrate for a display element. A transparent composite sheet obtained by curing a composite composition comprising a glass filler and a transparent resin composition that includes an alicyclic epoxy resin indicated by Chemical Formula (1) below and/or an alicyclic epoxy resin indicated by Chemical Formula (2) below; at least one type of compound other than the alicyclic epoxy resin having a cationic-polymerizable functional group; and a curing agent; wherein the admixture ratio of the alicyclic epoxy resin and the compound having a cationic-polymerizable functional group is preferably 99:1 to 70:30.
摘要:
The present disclosure is directed toward solutions, transparent films prepared from aromatic copolyamides, and a display element, an optical element or an illumination element using the solutions and/or the films. The copolyamides, which contain pendant carboxylic groups are solution cast into films using cresol, xylene, N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP), dimethylsulfoxide (DMSO), or butyl cellosolve or other solvents or mixed solvent which has more than two solvents. When the films are thermally cured at temperatures near the copolymer glass transition temperature, after curing, the polymer films display transmittances >80% from 400 to 750 nm, have coefficients of thermal expansion of less than 20 ppm, and are solvent resistant.