Abstract:
According to a first aspect of this invention, there is provided A magnesium-containing solid, obtained by contacting the reaction product of (1):(A) metallic magnesium;(B) a halogenated hydrocarbon of the general formula RX in which R stands for an alkyl, aryl or cycloalkyl group having 1 to 20 carbon atoms, and X stands for a halogen atom; and(C) an alkoxy compound of the general formula X'.sub.m C(OR').sub.4-m in which X' stands for a hydrogen or halogen atom, or an alkyl, aryl or cycloalkyl group having 1 to 10 carbon atoms, R' stands for an alkyl, aryl or cycloalkyl group having 1 to 20 carbon atoms, and m is 0, 1 or 2, with (2) an electron donative compound and hydrogen halide. The supported transition metal in combination with an organoaluminum co-catalyst is employed as an olefin polymerization catalyst.
Abstract:
A process for producing a magnesium containing support for titanium comprising contacting magnesium metal, a halogenated hydrocarbon and a compound represented by the formula X'.sub.m C(OR').sub.4-m wherein X' is a hydrogen atom, a halogen atom or a C.sub.1 -C.sub.10 alkyl, aryl, cycloalkyl or halogenated alkyl, aryl, cycloalkyl group, R' is a C.sub.1 -C.sub.20 alkyl, aryl or cycloalkyl group and m is 0, 1 or 2 to form a magnesium-containing solid represented by the formula R'OMgX and thereafter contacting the magnesium-containing solid with a Lewis base or a compound which can form an ester such as benzoyl chloride and a titanium compound such as titanium tetrachloride. The obtained magnesium supported titanium composition is useful as a catalyst component in combination with a co-catalyst organoaluminum compound for the polymerization of olefins.
Abstract:
A supported titanium catalyst, adaptable for use in the stereoregular polymerization of .alpha.-olefins, is produced by treating a supported titanium-containing solid, obtained by cogrinding a magnesium halide, tetravalent titanium halide and organic acid ester, with a hydrocarbon, organo halogen compound or mixture thereof with heating. The resulting supported titanium catalyst, when employed as a titanium component with an organo aluminum catalyst component for the catalyst system in a process for stereoregular polymerization of .alpha.-olefins, produces high polymerization activity and unexpectedly high stereoregular polymer yielding ratios.
Abstract:
Modified polyolefin having high adhesion strength and less irritating odor during processing is obtained by reacting unsaturated carboxylic acid or its anhydride grafted polyolefin with a bifunctional compound having alcohol groups or amine groups. Preferable unsaturated carboxylic acids are maleic acid, and endobicyclo-[2,2,1]-5-heptene-2,3-dicarboxylic acid. Preferable bifunctional compounds are ethylene glycol, 1,4-butanediol, 1,6-hexanediol, glycerine, ethylene diamine, 1,3-diaminopropane m-phenylene diamine, etc.
Abstract:
Spherical polyolefin (or modified polyolefin) powders having high bulk density, narrow particle size distribution and good powder flowability are prepared by cooling a polyolefin solution comprising a solvent and nonsolvent for the polyolefin and containing a small amount of an inorganic compound and, if desired, water. The polyolefin powders are suitable for powder coating. Suitable solvents are hydrocarbons, such as hexane, heptane, etc., and a mixture of hydrocarbon and nonsolvent for polyolefin such as methyl alcohol, ethyl alcohol, isopropyl alcohol, etc. The ratio of a hydrocarbon/nonsolvent is 95/5 - 30/70, preferably 90/10 - 50/50. Suitable inorganic compounds are phosphoric acid, sulfuric acid, sulfurous acid, hydrochloric acid, sodium hydroxide, potassium hydroxide, ammonium hydroxide, inorganic salts thereof, etc. and the most preferable inorganic compound is phosphoric acid.
Abstract:
According to this invention, there is provided a magnesium-containing solid, obtained by contacting the reaction product of (1):a magnesium-containing solid, obtained by contacting the reaction product of:(a) metallic magnesium;(b) a halogenated hydrocarbon of the general formula RX in which R stands for an alkyl, aryl or cycloalkyl group having 1 to 20 carbon atoms, and X stands for a halogen atom; and(c) an alkoxy compound of the general formula X'.sub.m C(OR').sub.4-m in which X' stands for a hydrogenor halogen atoms, or an alkyl, aryl or a cycloalkyl group having 1 to 10 carbon atoms, R' stands for an alkyl, aryl or cycloalkyl group having 1 to 20 carbon atoms and m is 0, 1 or 2, with (2) an organic aluminum compound.The magnesium-containing solid is employed as a carrier for a transition metal halide. The supported transition metal halide in combination with an aluminum alkyl cocatalyst such as aluminum triethyl is usefully employed for the polymerization of olefins.
Abstract:
A polyolefin composition comprising a modified polyolefin obtained by adding an unsaturated carboxylic acid or an anhydride thereof to a polyolefin or mixtures of said modified polyolefin and an unmodified polyolefin, an inorganic filler, one or more nucleating agents or a combination thereof with one or more heat deterioration inhibitors, said polyolefin composition evidencing reduced deterioration by heat or reduction of its mechanical strength during a molding operation.
Abstract:
A supported titanium catalyst is produced by cogrinding, in combination, a magnesium halide, tetravalent titanium halide, organic acid ester, and an organic halogen compound. The resulting supported titanium catalyst, when employed as a titanium component with an organo aluminum catalyst component for the catalyst system in a process for stereoregular polymerization of .alpha.-olefins, produces high polymerization activity and unexpectedly high stereoregular polymer yielding ratios.
Abstract:
A supported titanium catalyst is produced by cogrinding, in combination, a magnesium halide, tetravalent titanium halide, organic acid ester, and an organic halogen compound. The resulting supported titanium catalyst, when employed as a titanium component with an organo aluminum catalyst component for the catalyst system in a process for stereoregular polymerization of .alpha.-olefins, produces high polymerization activity and unexpectedly high stereoregular polymer yielding ratios.
Abstract:
A supported titanium catalyst, adaptable for use in the stereoregular polymerization of .alpha.-olefins, is produced by treating a supported titanium-containing solid, obtained by cogrinding a magnesium halide, tetravalent titanium halide and organic acid ester, with a hydrocarbon, organo halogen compound or mixture thereof with heating. The resulting supported titanium catalyst, when employed as a titanium component with an organo aluminum catalyst component for the catalyst system in a process for stereoregular polymerization of .alpha.-olefins, produces high polymerization activity and unexpectedly high stereoregular polymer yielding ratios.