Abstract:
An optical sensor formed from an optical waveguide having at least one core surrounded by a cladding and a large diameter generally D-shaped portion is disclosed. Axial or compressive strain across the D-shaped cross section may be determined by measuring the change in polarization or birefringence of the light output from the sensor. A layer responsive to a parameter may be disposed on a flat portion of the D-shaped portion of the sensor. The refractive index of the layer changes and/or the layer applies a strain on the sensor in response to the parameter. Changes in the refractive index of the layer alters the light output from the sensor, which is measured over time and correlated to the parameter.
Abstract:
Microparticles 8 includes an optical substrate 10 having at least one diffraction grating 12 disposed therein. The grating 12 having a plurality of colocated pitches Λ which represent a unique identification digital code that is detected when illuminated by incident light 24. The incident light 24 may be directed transversely from the side of the substrate 10 with a narrow band (single wavelength) or multiple wavelength source, in which case the code is represented by a spatial distribution of light or a wavelength spectrum, respectively. The code may be digital binary or may be other numerical bases. The micro-particles 8 can provide a large number of unique codes, e.g., greater than 67 million codes, and can withstand harsh environments. The micro-particles 8 are functionalized by coating them with a material/substance of interest, which are then used to perform multiplexed experiments involving chemical processes, e.g., DNA testing and combinatorial chemistry.
Abstract:
A composition including an item and an optical identification element that is physically associated with the item. The optical identification element includes a binder material and one or more materials embedded in the binder material. The one or more materials provides a composite X-ray diffraction pattern when illuminated by an X-ray beam. The composite X-ray diffraction pattern being indicative of a code. The code relating to information about the item.
Abstract:
An optical identification element for identifying an item. The optical identification element includes a binder material and one or more materials embedded in the binder material. The one or more materials provides an encoded composite X-ray diffraction pattern when illuminated by an X-ray beam. The encoded composite X-ray diffraction pattern is indicative of the item.
Abstract:
A method and apparatus for drug product tracking (or other pharmaceutical, health care or cosmetics products, and/or the packages or containers they are supplied with) using diffraction grating-based encoded optical identification elements includes an optical substrate having at least one diffraction grating disposed therein. The encoded element may be used to label any desired item, such as drugs or medicines, or other pharmaceutical or health care products or cosmetics. The label may be used for many different purposes, such as for sorting, tracking, identification, verification, authentication, anti-theft/anti-counterfeit, security/anti-terrorism, or for other purposes.
Abstract:
An optical reader system that includes a plurality of substrates. The substrates have an optically readable code disposed therein and a source light assembly that is configured to illuminate the substrates with a code-reading beam and another beam for detecting another optically readable property of the substrate. The code-reading beam and the other beam form beam spots on the substrates that have different shapes. The system also includes a reader that is configured to receive output signals from the code-reading beam and the other beam when the substrates are illuminated. The output signals from the code-reading beam are indicative of the code.
Abstract:
A method for fabricating an optical identification element is provided, wherein a removable plate or substrate having photosensitive material fabricated thereon, one or more gratings are written on the photosensitive material, then lines are etched to create one or more separate optical identification elements. The one or more gratings may be written by exposing the photosensitive material to ultraviolet (UV) light. The lines may be etched to create the one or more separate optical identification elements by photolithography to define/create the same.
Abstract:
A method for fabricating microparticles is provided. The method includes providing a removable substrate that has a photosensitive material. The substrate has a plurality of inner regions. Each inner region surrounds a corresponding outer region. The method also includes providing at least one optically detectable code within at least one of the inner regions of the substrate and etching lines into the substrate to create a plurality of microparticles having at least one optically detectable code therein. The microparticles have elongated bodies that extend in an axial direction. The optically detectable codes extend in the axial direction within the microparticles.
Abstract:
A method of manufacturing optical identification elements that includes forming a diffraction grating in a fiber substrate along a longitudinal axis of the substrate. The grating includes a resultant refractive index variation. The method also includes cutting the substrate transversely to form a plurality of optical identification elements that have the grating therein along substantially the entire length of the elements. Each of the elements has substantially the same resultant refractive index variation.
Abstract:
Microparticles 8 includes an optical substrate 10 having at least one diffraction grating 12 disposed therein. The grating 12 having a plurality of colocated pitches Λ which represent a unique identification digital code that is detected when illuminated by incident light 24. The incident light 24 may be directed transversely from the side of the substrate 10 with a narrow band (single wavelength) or multiple wavelength source, in which case the code is represented by a spatial distribution of light or a wavelength spectrum, respectively. The code may be digital binary or may be other numerical bases. The micro-particles 8 can provide a large number of unique codes, e.g., greater than 67 million codes, and can withstand harsh environments. The micro-particles 8 are functionalized by coating them with a material/substance of interest, which are then used to perform multiplexed experiments involving chemical processes, e.g., DNA testing and combinatorial chemistry.