Abstract:
An instrument for drilling dental root canals includes a tapered rod having over at least a part of its length—the active part—a polygonal cross-section forming at least two cutting edges, the active part terminating by a point and being defined by an envelope of cylindrical or conical shape, whose longitudinal axis coincides with the instrument's axis of rotation. The active part has a first portion extending from the point and a second portion extending following the first portion towards the rear of the active part. At least one cross-section of the first portion has a centre of mass located on the axis of rotation and the cutting edges are located on the envelope. Any cross-section of the second portion has a centre of mass offset with respect to the axis of rotation and at least one cutting edge defined by the cross-section is located set back.
Abstract:
A set of a first and a second preparation are intended to be mixed before or during an endodontic treatment to form an endodontic irrigation solution. The first preparation includes an oxidizing agent. The second preparation includes antibacterial nanoparticles treated to slow their oxidation by the oxidizing agent. The antibacterial nanoparticles are, for example, encapsulated in shells in a hybrid core-shell structure. In one variation, the antibacterial nanoparticles are made from an alloy of at least two elements, one of the elements being more resistant to oxidation than the other.
Abstract:
A computer based method and system for defining and representing a shape and geometry of an occlusal access cavity to the tooth roots prior to endodontic treatment, include the step or elements for: loading onto the computer information of the geometry of a tooth obtained via one or more imaging techniques, creation of a 3D computer model of the tooth, including its internal architecture, visualisation of the computer model, visualisation of the location(s) of the entrance(s) to root canal(s) relative to the tooths occlusal surface, and based on the locations of the root canal orifices a shape of the access cavity is calculated.
Abstract:
An instrument for drilling dental root canals includes a tapered rod having over at least a part of its length—the active part—a polygonal cross-section forming at least two cutting edges, the active part terminating by a point and being defined by an envelope of cylindrical or conical shape, whose longitudinal axis coincides with the instrument's axis of rotation. The active part has a first portion extending from the point and a second portion extending following the first portion towards the rear of the active part. At least one cross-section of the first portion has a center of mass located on the axis of rotation and the cutting edges are located on the envelope. Any cross-section of the second portion has a center of mass offset with respect to the axis of rotation and at least one cutting edge defined by the cross-section is located set back.
Abstract:
A set of a first and a second preparation are intended to be mixed before or during an endodontic treatment to form an endodontic irrigation solution. The first preparation includes an oxidizing agent. The second preparation includes antibacterial nanoparticles treated to slow their oxidation by the oxidizing agent. The antibacterial nanoparticles are, for example, encapsulated in shells in a hybrid core-shell structure. In one variation, the antibacterial nanoparticles are made from an alloy of at least two elements, one of the elements being more resistant to oxidation than the other.
Abstract:
An apex-locating method and device for determining the depth position of the apex in a dental root canal. It uses a device making it possible to form a circuit including a first probe electrode inserted into the root canal of a tooth, a second electrode in conductive contact with an oral mucous membrane, frequency-generating elements able to produce alternating electrical signals at a number of frequencies, and elements for measuring electrical magnitude of alternating signals in the circuit. Provision is made for exciting the circuit and measuring the levels of magnitude of the alternating signals, respectively at low frequency and at high frequency and for detecting a point of intersection where the two levels measured at low and high frequencies meet and become substantially equal, these frequencies being sufficiently far apart for this point of intersection to exist. This point gives the position of the apex.
Abstract:
An apex-locating method and device for determining the depth position of the apex in a dental root canal. It uses a device making it possible to form a circuit including a first probe electrode inserted into the root canal of a tooth, a second electrode in conductive contact with an oral mucous membrane, frequency-generating elements able to produce alternating electrical signals at a number of frequencies, and elements for measuring electrical magnitude of alternating signals in the circuit. Provision is made for exciting the circuit and measuring the levels of magnitude of the alternating signals, respectively at low frequency and at high frequency and for detecting a point of intersection where the two levels measured at low and high frequencies meet and become substantially equal, these frequencies being sufficiently far apart for this point of intersection to exist. This point gives the position of the apex.