Abstract:
An optical device is provided with an optical unit for forming an optical path of a laser beam, and a housing defining an internal space for accommodating the optical unit. The housing includes a partition for dividing the internal space into a first space and a second space. The optical unit includes a sensor arranged in the first space to detect the laser beam in the second space, a mirror arranged in the second space to define a direction of the optical path, a drive source arranged in the second space to operate the mirror to adjust the direction of the optical path, a power line for supplying power to the drive source, and a signal line for transmitting an output signal of the sensor. The signal line extends in the first space and the power line extends in the second space.
Abstract:
An optical device is provided with an optical unit for forming an optical path of a laser beam, and a housing defining an internal space for accommodating the optical unit. The housing includes a partition for dividing the internal space into a first space and a second space. The optical unit includes a sensor arranged in the first space to detect the laser beam in the second space, a mirror arranged in the second space to define a direction of the optical path, a drive source arranged in the second space to operate the mirror to adjust the direction of the optical path, a power line for supplying power to the drive source, and a signal line for transmitting an output signal of the sensor. The signal line extends in the first space and the power line extends in the second space.
Abstract:
A rectangular plate optical reflecting mirror is provided in an optical scanner. The optical reflecting mirror reflects an optical beam onto a surface to be scanned. The optical reflecting mirror includes a center portion and end portions in a longitudinal direction. The center portion has a greater thickness than that of the end portions. Accordingly, rigidity of the optical reflecting mirror can be increased, and its characteristic frequency can be set at a high value. Thus, resonance of the optical reflecting mirror can be prevented from occurring as a result of vibration of a housing which vibrates with a plurality of vibration modes.
Abstract:
A fixing mechanism of an optical scanning device, the optical scanning device emitting a light beam and performing a scanning, the optical scanning device further being fixed to a frame at an external part, the optical scanning device further including a housing, and the fixing mechanism including: a penetration hole provided in the frame; and a protruding pin provided at both ends of the housing thereby forming a plurality of protruding pins, wherein at least one of the plurality of protruding pins is insertable to the penetration hole formed in the frame; and a biasing member biasing the housing in a direction.
Abstract:
Provided are a displacement/distortion measuring method and a displacement/distortion measuring apparatus for easily and highly accurately measuring displacement or distortion of an object. An image of the surface of the measuring object is picked up by a line scanner apparatus adhered or brought close to the surface of the measuring object. The image is taken, displacement or distortion is measured by image analysis of the image of the measuring object surface prior to time lapse and that after time lapse, and displacement or distortion measuring results are outputted.
Abstract:
Provided are a displacement/distortion measuring method and a displacement/distortion measuring apparatus for easily and highly accurately measuring displacement or distortion of an object. An image of the surface of the measuring object is picked up by a line scanner apparatus adhered or brought close to the surface of the measuring object. The image is taken, displacement or distortion is measured by image analysis of the image of the measuring object surface prior to time lapse and that after time lapse, and displacement or distortion measuring results are outputted.
Abstract:
A fixing mechanism of an optical scanning device, the optical scanning device emitting a light beam and performing a scanning, the optical scanning device further being fixed to a frame at an external part, the optical scanning device further including a housing, and the fixing mechanism including: a penetration hole provided in the frame; and a protruding pin provided at both ends of the housing thereby forming a plurality of protruding pins, wherein at least one of the plurality of protruding pins is insertable to the penetration hole formed in the frame; and a biasing member biasing the housing in a direction.
Abstract:
A rectangular plate optical reflecting mirror is provided in an optical scanner. The optical reflecting mirror reflects an optical beam onto a surface to be scanned. The optical reflecting mirror includes a center portion and end portions in a longitudinal direction. The center portion has a greater thickness than that of the end portions. Accordingly, rigidity of the optical reflecting mirror can be increased, and its characteristic frequency can be set at a high value. Thus, resonance of the optical reflecting mirror can be prevented from occurring as a result of vibration of a housing which vibrates with a plurality of vibration modes.