Abstract:
The waterproof structure of an electrical junction box herein prevents water from entering into the electrical junction box. The electrical junction box includes a main body having a groove formed on an outer wall thereof and a tubular wire cover composed of front and rear split covers. Electric wires are passed downward through the wire cover and fixed to a lower portion of the wire cover using a tape. The wire cover is slidably engaged with the groove of the junction box main body. The waterproof structure includes a step portion as a water stop formed on a rear wall of the wire cover. The rear wall is arranged in contact with or adjacent to a back wall of the groove so that the step portion prevents water from entering into the electrical junction box from bottom along the back wall of the groove through the electric wire.
Abstract:
A wavelength converter using difference frequency generation (DFG) is disclosed. In one embodiment, the wavelength converter comprises (a) a first optical filter configured to filter out one or more lightwaves requiring wavelength conversion from wavelength-division multiplexed (WDM) lightwaves, and (b) a broadband multi-channel simultaneous wavelength conversion portion comprising a pump source that generates pump light for use in the process of the DFG, a first optical combiner for combining said pump light with said filtered lightwaves, a high non-linear medium configured to generate wavelength converted lightwaves from said filtered lightwaves using the DFG, and a second optical filter for filtering said wavelength converted from said filtered lightwaves.
Abstract:
First and second optical fibers are opposed to each other, between which first and second lenses constituting a lens system having an optical axis coincident with those of the optical fibers are arranged with a gap therebetween in the direction of the optical axis. The actuators, ect are used to move the first and second lenses with electrostatic forces, in opposite directions along the optical axes of the optical fibers by the same amount at the same time. Thereby, the spot size of the light incident on the optical fiber on the reception side is changed while maintaining the light propagating between the first optical fiber and the second optical fiber point-symmetric in mode field shape. This changes the coupling efficiency between the first optical fiber and the second optical fiber, allowing an adjustment in light power.
Abstract:
An optical attenuator (8) has a substrate (glass substrate) (1) and an optical attenuation film (2) that attenuates an input light with a predetermined optical attenuation factor, and the optical attenuation film (2) is disposed on a light input face (3) of the substrate (1). An angle defined by the light input face (3) and the light output face (4) of the substrate (1) is set to 0.15° to 0.5°. A protective film (5) for preventing the deterioration of the optical attenuation film (2) is formed on a surface of the optical attenuation film (2).
Abstract:
In a moving sidewalk comprising loading-unloading belts and one or more of accelerating-decelerating belt(s) independently provided in front and in the rear of the main circulating belt, wherein the traveling speed of the loading-unloading belt and of the accelerating-decelerating belt are determined to decrease with the decreasing distance to the entrance and the exit thereof, and thus to increase with the decreasing distance to the main circulating belt, and the traveling speed of the main circulating belt is faster than both of these belts, the speeds of the belts adjacent with each other are determined so that the difference between squares of the speeds of these belts does not exceed the prescribed value in order to give no feeling of fear to the passenger.
Abstract:
A common mode filter includes a drum-shaped core 1 with a winding 2 and a plate-like core fixed to flanges 1b to form a closed magnetic path. Concave portions 4a are formed in at least one of facing potions of both cores to provide gaps between the flanges 1b of the drum-shaped core and the plate-like core 4. A plurality of electrodes 3 each of which is successive over a upper surface, end face and lower surface of each flange are provided at portions corresponding to the gaps in each flange 1b. A plurality of windings 2 are wound around the winding core 1a so that both ends of each of the plurality of windings are electrically connected and secured to the portions of the electrodes on the upper surface of each of the flanges, respectively, by conductive fixing agent. The drum-shaped core 1 and the plate-like core 4 are fixed to each other by an adhesive 5.
Abstract:
A moving walk for effecting transport in a longitudinal direction includes a series of belt modules with modules at a center portion running at a higher rate than modules at exit ends. Among the belt modules are at least first and second belt modules, each having a first end and a second end, a endless belt extending from the first end to the second end, and a drive circulating the endless belt. The first and second belt modules are disposed adjacent one another in the longitudinal direction with the second end of the first belt module opposing the first end of the second belt module. The second end of the first belt module is disposed higher that the first end of the second belt module when a passenger is transported from the first belt module to the second belt module to facilitate transition from module to module.
Abstract:
A BALUN transformer core material contains a Z-type hexagonal system ferrite having an in-plane anisotropy and a high magnetic permeability and such a high resonance frequency as to be in excess of a Snake's limiting line, and therefore, in the BALUN transformer core material, the frequency properties of the magnetic permeability are extremely good. A BALUN transformer core obtained by pressing and sintering this BALUN transformer core material has a high initial magnetic permeability and specific resistance. Moreover, a BALUN transformer obtained by applying a winding to the BALUN transformer core is provided with superior properties which are not poorer as compared with a BALUN transformer constituted of a conventional spinel ferrite, and it is a BALUN transformer having high properties which can be used in a high-frequency band of 300 MHz or more.
Abstract:
There are provided a power supply device for an optical functional component that supplies power to the optical functional component with reliability for a long term and enables easy exchange of the optical functional component, and an optical functional module having such a power supply device, where the power supply device is provided with a reception electrode 104, a power supply electrode 107-1 that supplies power to the reception electrode 104 while holding tight the reception electrode 104 on its side faces and thereby holding an optical functional component 105-1 detachably, and a protecting member 108 that is made of an insulating material and surrounds the power supply electrode 107-1 to prevent current leaks, and the power supply electrode 107-1 is comprised of two bent metallic members (107-1a and 107-1B) which are in intimate contact with the reception electrode 104 by elasticity.
Abstract:
First and second optical fibers are opposed to each other, between which first and second lenses constituting a lens system having an optical axis coincident with those of the optical fibers are arranged with a gap therebetween in the direction of the optical axis. The actuators, ect are used to move the first and second lenses with electrostatic forces, in opposite directions along the optical axes of the optical fibers by the same amount at the same time. Thereby, the spot size of the light incident on the optical fiber on the reception side is changed while maintaining the light propagating between the first optical fiber and the second optical fiber point-symmetric in mode field shape. This changes the coupling efficiency between the first optical fiber and the second optical fiber, allowing an adjustment in light power.