Abstract:
A solid-state imaging apparatus, comprising: a semiconductor chip having a principal face including a pixel region; a protruding portion disposed on the principal face to surround the pixel region; a cover member disposed over the pixel region; and an adhesive material surrounding the pixel region and bonding the cover member and the protruding portion, is provided. The protruding portion has top and first side faces facing the space, a first edge line being formed by this two faces. The adhesive material bonds the top face of the protruding portion and the cover member. The adhesive material has a first face facing the interior space, and the first face extends from the first edge line toward the cover member. Perimeters of the interior space, in planes parallel to the principal face become shorter in a direction from the top face of the protruding portion toward the cover member.
Abstract:
A semiconductor module includes a semiconductor chip sealed with an encapsulation resin prevented from overflowing from an inside of the outer edge by a wiring pattern extended portion extending from the wiring pattern along an outer edge of a solder resist pattern at an outside of the outer edge of the solder resist pattern.
Abstract:
A method of manufacturing an optical sensor includes the steps of providing a semiconductor wafer having a plurality of pixel areas; forming a grid-like rib enclosing each pixel area on the semiconductor wafer, the grid-like rib having a predetermined width and being formed from a fixing member; providing a light-transmissive substrate having a gap portion on a main surface thereof, the gap portion having at least one of a groove having a width smaller than the grid-like rib and a plurality of through-holes; fixing the semiconductor wafer and the light-transmissive substrate such that the grid-like rib and the gap portion face each other; and cutting the fixed semiconductor wafer and light-transmissive substrate into pieces such that each piece includes one pixel area.
Abstract:
An image pickup module includes a cover member, an image pickup device chip including photodiodes, a fixing member which is arranged around the image pickup device chip and which connects the cover member and the image pickup device chip together, a rewiring substrate arranged on the side opposite to the cover member of the image pickup device chip, connection members for connecting the image pickup device chip with the rewiring substrate, and a space surrounded by the cover member, the image pickup device chip, and the fixing member. The image pickup device chip includes a semiconductor substrate. The semiconductor substrate includes through-hole electrodes penetrating the substrate. When an area corresponding to the fixing member in the orthogonal projection of the image pickup module with respect to the cover module is defined as a fixed area, the through-hole electrodes and the connection members are arranged in the fixed area.
Abstract:
A method includes preparing a cover member; preparing an image pickup element including a substrate including a pixel region including a plurality of photo detectors on a principal surface, a first concavo-convex portion including a plurality of first convex portions configured to concentrate light on the plurality of photo detectors, the first convex portions each having a lens shape, and a second concavo-convex portion surrounding the first concavo-convex portion, the second concavo-convex portion including a plurality of second convex portions; and fixing the cover member to a region of the image pickup element using a fixing member, the region being between the first concavo-convex portion and the second concavo-convex portion.
Abstract:
A semiconductor module includes a semiconductor chip sealed with an encapsulation resin prevented from overflowing from an inside of the outer edge by a wiring pattern extended portion extending from the wiring pattern along an outer edge of a solder resist pattern at an outside of the outer edge of the solder resist pattern.
Abstract:
A method includes preparing a cover member; preparing an image pickup element including a substrate including a pixel region including a plurality of photo detectors on a principal surface, a first concavo-convex portion including a plurality of first convex portions configured to concentrate light on the plurality of photo detectors, the first convex portions each having a lens shape, and a second concavo-convex portion surrounding the first concavo-convex portion, the second concavo-convex portion including a plurality of second convex portions; and fixing the cover member to a region of the image pickup element using a fixing member, the region being between the first concavo-convex portion and the second concavo-convex portion.
Abstract:
An image pickup module includes a cover member, an image pickup device chip including photodiodes, a fixing member which is arranged around the image pickup device chip and which connects the cover member and the image pickup device chip together, a rewiring substrate arranged on the side opposite to the cover member of the image pickup device chip, connection members for connecting the image pickup device chip with the rewiring substrate, and a space surrounded by the cover member, the image pickup device chip, and the fixing member. The image pickup device chip includes a semiconductor substrate. The semiconductor substrate includes through-hole electrodes penetrating the substrate. When an area corresponding to the fixing member in the orthogonal projection of the image pickup module with respect to the cover module is defined as a fixed area, the through-hole electrodes and the connection members are arranged in the fixed area.
Abstract:
A solid-state imaging apparatus, comprising: a semiconductor chip having a principal face including a pixel region; a protruding portion disposed on the principal face to surround the pixel region; a cover member disposed over the pixel region; and an adhesive material surrounding the pixel region and bonding the cover member and the protruding portion, is provided. The protruding portion has top and first side faces facing the space, a first edge line being formed by this two faces. The adhesive material bonds the top face of the protruding portion and the cover member. The adhesive material has a first face facing the interior space, and the first face extends from the first edge line toward the cover member. Perimeters of the interior space, in planes parallel to the principal face become shorter in a direction from the top face of the protruding portion toward the cover member.
Abstract:
A cover member fixed to a pickup element has a non-vertical surface and an upright surface and satisfies H2 tan(θA−2θC)≦L1+L1′ at any point on the upright surface, and H tan(θA−2θB)+(H1)tan θB≦L1 and θB>θC at any point on the non-vertical surface, where θA is the inclination of incident light, θB is the inclination at a point on the non-vertical surface, θC is the inclination at a point on the upright surface, H1 is the height of the non-vertical surface, H2 is the height of the upright surface, H is the height of the frame portion, L1 is the distance from the edge of a pixel region to the upper edge of the upright surface, and L1′ is the distance from the upper edge to the lower edge of the upright surface in the planar direction.