Abstract:
The present invention realizes a reliable heat pump apparatus and heat pump apparatus having high recovering efficiency. The heat pump apparatus includes an expander 711 for expanding working fluid, a permanent magnet type synchronization power generator 710 which is disposed for recovering power by the expander 711 and which generates three phase AC power, and a first converter 708 which converts the AC power to DC power, and which rotates the power generator 710 at a predetermined target number of revolutions by switching of a switching element group 709. The generated electricity is consumed by connection of an AC power supply 701 to a DC power line which is rectified and smoothened by a rectifier circuit 702 and a smoothing capacitor 703, and by driving of an electric motor 706 which rotates a compressor 707 through a motor drive apparatus 704, and the power is efficiently recovered.
Abstract:
An expander of the invention includes: n-number of rotary type fluid mechanisms (where n is an integer equal to or greater than 2), a first suction port (41b) for sucking a working fluid into a suction-side space (55a) of a first fluid mechanism (41), a communication port (43a) connecting a discharge-side space (55b) of a k-th fluid mechanism (where k is an integer from 1 to n−1) and a (k+1)-th suction-side space (56a) to form a single space, and a discharge port (51a) for discharging the working fluid from the discharge-side space of an n-th fluid mechanism. The expander further includes a second suction port (72f) being capable of changing its connecting position to the suction-side space (55a) of the first fluid mechanism (41), for sucking the working fluid into the suction-side space (55a).
Abstract:
A force sensation exhibiting device has a housing which can be grasped by a hand, at least one rotatably or linearly movable motor contained in the housing, an input section where repulsive force information are input, and control circuit for driving and controlling said motor according to the repulsive force information, wherein a force sensation is given to said hand by a drive of the motor.
Abstract:
A liquid or powder measurement apparatus, usable also for mixing a plurality of measured materials and for distributing the mixture to a plurality of dispensing containers. A flow control valve having a wide flow rate range and excellent linearity between the degree of valve opening and flow rate is disposed in each of the liquid flow paths and is adjustable to have a flow rate linearly varying with the stroke of the valve. A mixing container receives the raw material from one or more supply containers and is weighed by a load cell to thereby detect the amount of material flowing into or out of the mixing container. A control unit operating according to fuzzy logic compares the measured weight with a target weight and accordingly adjusts the flow rate of a selected one of the flow regulators. The same load cell and control unit can also control the flows from the mixing containers to the dispensing containers.
Abstract:
The present invention realizes a reliable heat pump apparatus and heat pump apparatus having high recovering efficiency. The heat pump apparatus includes an expander 711 for expanding working fluid, a permanent magnet type synchronization power generator 710 which is disposed for recovering power by the expander 711 and which generates three phase AC power, and a first converter 708 which converts the AC power to DC power, and which rotates the power generator 710 at a predetermined target number of revolutions by switching of a switching element group 709. The generated electricity is consumed by connection of an AC power supply 701 to a DC power line which is rectified and smoothened by a rectifier circuit 702 and a smoothing capacitor 703, and by driving of an electric motor 706 which rotates a compressor 707 through a motor drive apparatus 704, and the power is efficiently recovered.
Abstract:
A control apparatus of a synchronous reluctance motor includes a torque current correction unit (16) that generates a torque current command tracing a load torque so as to make the output torque of the motor coincide with the load torque. The control apparatus may further include a position and speed estimation unit (13) that estimates the position and speed based on three phase voltage equation to improve control performance in a voltage saturation state.
Abstract:
A powder measuring device and powder measuring mixer in which powder is supplied from a supply hopper to a measuring hopper with its flow rate controlled by a flow regulator associated with the hopper. The weight of the measuring hopper is monitored. A controller compares the measured weight with a target rate to produce a deviation therebetween and a time variation of the deviation. The controller operates according to fuzzy inference to produce a desired flow rate for the next control cycle. This desired flow rate is then supplied to the flow regulator. Several supply hoppers with associated flow regulators can be used. Then the output of the controller is switched between the different flow regulators at different phases of the mixing measurement. Additionally, the measuring hopper can be movable between the different supply hoppers so as to avoid complicated piping.
Abstract:
A heat pump apparatus includes a compressor, a motor, an expander, a generator, and a variable-speed converter. The variable-speed converter is connected to the generator and converts alternating current generated by the generator into direct current. The variable-speed converter continues to control driving of the generator after an operation stop trigger occurs for lowering the speed of the motor and stopping the operation of the heat pump apparatus at least until a value of current flowing through the generator becomes equal to or less than a predetermined value. The variable-speed converter stops the working of the generator after the value of current flowing through the generator becomes equal to or less than the predetermined value.
Abstract:
The invention provides an motor drive apparatus comprising a detector for detecting a terminal voltage in a non-energized phase and a detector for detecting a DC voltage applied to the main line of an inverter. The rotation of the brushless motor is controlled by specifying the inverter circulating current period from the terminal voltage and the DC voltage and calculating the magnetic pole position of the rotor from the terminal voltage after the end of the inverter circulating current period and a waveform of the terminal voltage predetermined from the characteristics of the brushless motor. As a result, the brushless motor can be rotated stably throughout a wide revolution range from low to high speeds.
Abstract:
An inverter control apparatus for controlling a command frequency and a command voltage which are supplied to an inverter which then supplies AC power of a desired frequency, accordingly, to an induction motor. The inverter control apparatus receives a requested rotational speed of the motor and an actual rotational speed of the motor is obtained by detecting a frequency of a fluctuation component of a drive current supplied from the inverter to the induction motor. The difference between the requested rotational speed and the actual rotational speed represents a slip amount, which is added to the requested rotational speed to produce a command frequency. The command voltage is set to a voltage acquired when the monitored drive current is at a minimum value. Thus, the inverter control apparatus is able to maintain power consumption at the lowest possible level in response to changes in the operating environment without requiring a motor constant input or a motor speed detector, while compensating the slip ratio of the induction motor to maintain the motor speed at a target level.