Abstract:
A ceramic compact having a patterned conductor is obtained by coating the patterned conductor with a slurry and then by hardening the slurry. The slurry is prepared by mixing a thermosetting resin precursor, a ceramic powder, and a medium. In the ceramic compact, an isocyanate- or isothiocyanate-containing gelling agent and a hydroxyl-containing polymer are reacted and hardened to produce a thermosetting resin. The hydroxyl-containing polymer is preferably a butyral resin, an ethylcellulose-based resin, a polyethyleneglycol-based resin, or a polyether-based resin.
Abstract:
A ceramic compact having a patterned conductor is obtained by coating the patterned conductor with a slurry and then by hardening the slurry. The slurry is prepared by mixing a thermosetting resin precursor, a ceramic powder, and a medium. In the ceramic compact, an isocyanate- or isothiocyanate-containing gelling agent and a hydroxyl-containing polymer are reacted and hardened to produce a thermosetting resin. The hydroxyl-containing polymer is preferably a butyral resin, an ethylcellulose-based resin, a polyethyleneglycol-based resin, or a polyether-based resin.
Abstract:
There is provided a perpendicular magnetic recording medium which causes low media noise and achieves preferable read/write performance. A perpendicular magnetic layer is constructed such that first magnetic layers formed of Co or Co containing an oxide and second magnetic layers formed of Pt or Pd containing an oxide are layered. The perpendicular magnetic layer is provided on a non-magnetic substrate via a Ru underlayer containing oxygen. An alignment control layer formed of a Ni—Fe alloy is provided between the non-magnetic substrate and the underlayer to control the crystal alignment of the underlayer. A soft magnetic backing layer is provided between the substrate and the alignment control layer.
Abstract:
A piezoelectric/electrostrictive device is provided with a stationary portion, a thin-plate portion supported by the stationary portion, and piezoelectric/electrostrictive element formed by alternately laminating a plurality of electrodes and a plurality of piezoelectric/electrostrictive layers. The piezoelectric/electrostrictive device is produced by cutting a thin-plate body that composes the thin-plate portion afterward and a laminated body comprising the piezoelectric/electrostrictive layers and thereafter applying prescribed specific processing (for example, heat treatment) to the cut plane (the lateral end surfaces). By so doing, the ratio of the actual surface area of the lateral end surface of the piezoelectric/electrostrictive element to the area of the lateral end surface of the piezoelectric/electrostrictive element in the orthographic projection is four or less, and the deposition of moisture on the lateral end surfaces is suppressed to the extent of not substantially generating electric leakage or ion migration. As a result, a highly durable piezoelectric/electrostrictive device can be provided.
Abstract:
A piezoelectric/electrostrictive device includes a base 11 having a pair of movable parts 11a, 11b opposing each other and a connecting part 11c that connects movable parts 11a, 11b with each other at one end thereof as well as piezoelectric/electrostrictive elements 12a, 12b disposed on the side surfaces of movable parts 11a, 11b of base 11. The piezoelectric/electrostrictive device is constructed in a simple structure with fewer components. Base 11 is integrally formed in an open-box shape or in a horseshoe shape by bending one sheet of band-shaped flat plate. Movable parts 11a, 11b extend for a predetermined length from respective ends of connecting part 11c to the other ends. The other ends of movable parts 11a, 11b constitute a mounting site for mounting a component to be controlled or a component to be tested.
Abstract:
A pair of opposing thin plate sections, movable sections, and fixed sections for supporting the thin plate sections and the movable sections are provided on a ceramic substrate. After a wiring pattern and a gap or an insulating layer of cermet layer for filling the gap are formed on a ceramic substrate, these are sintered. After that, piezoelectric/electrostrictive layers and cermet electrode layers including a piezoelectric/electrostrictive material and a conductive material are alternately stacked in a comb like structure on the ceramic substrate. Accordingly, a piezoelectric/electrostrictive device having the piezoelectric/electrostrictive element in multilayer structure is obtained.
Abstract:
A piezoelectric/electrostrictive device is provided with a stationary portion, a thin-plate portion supported by the stationary portion, and piezoelectric/electrostrictive element formed by alternately laminating a plurality of electrodes and a plurality of piezoelectric/electrostrictive layers. The piezoelectric/electrostrictive device is produced by cutting a thin-plate body that composes the thin-plate portion afterward and a laminated body comprising the piezoelectric/electrostrictive layers and thereafter applying prescribed specific processing (for example, heat treatment) to the cut plane (the lateral end surfaces). By so doing, the ratio of the actual surface area of the lateral end surface of the piezoelectric/electrostrictive element to the area of the lateral end surface of the piezoelectric/electrostrictive element in the orthographic projection is four or less, and the deposition of moisture on the lateral end surfaces is suppressed to the extent of not substantially generating electric leakage or ion migration. As a result, a highly durable piezoelectric/electrostrictive device can be provided.
Abstract:
A piezoelectric/electrostrictive device has a rotor substantially in the form of a rectangular parallelepiped, and a rotary actuator for angularly displacing the rotor 12. The rotary actuator includes a stationary member, a first vibratory plate and a second vibratory plate extending in one direction from opposite sides of the stationary member, a first piezoelectric/electrostrictive element for actuating the first vibratory plate, and a second piezoelectric/electrostrictive element for actuating the second vibratory plate. The rotor includes a pair of opposite surfaces, one of the surfaces having a first end secured to an end of the first vibratory plate and a second end, which is diagonally opposite to the first end, and which is secured to an end of the second vibratory plate.
Abstract:
A piezoelectric/electrostrictive device includes a base 11 having a pair of movable parts 11a, 11b opposing each other and a connecting part 11c that connects movable parts 11a, 11b with each other at one end thereof as well as piezoelectric/electrostrictive elements 12a, 12b disposed on the side surfaces of movable parts 11a, 11b of base 11. The piezoelectric/electrostrictive device is constructed in a simple structure with fewer components. Base 11 is integrally formed in an open-box shape or in a horseshoe shape by bending one sheet of band-shaped flat plate. Movable parts 11a, 11b extend for a predetermined length from respective ends of connecting part 11c to the other ends. The other ends of movable parts 11a, 11b constitute a mounting site for mounting a component to be controlled or a component to be tested.
Abstract:
The present invention provides a piezo-electric/electrostrictive device including a pair of thin plate sections in an opposed relation to each other, a fixing section for supporting the thin plate sections, and at least one pair of piezo-electric/electrostrictive elements are provided to the pair of thin plate sections. The thin plate sections include movable sections having end surfaces in an opposed relation. Recesses are formed between the thin plate sections and the fixing section and/or the movable sections.