Abstract:
Even when ejection characteristics of ink droplets are dispersed between unit heads and when arrangement accuracies of unit heads are dispersed, stripe unevenness is alleviated by correction corresponding to each unit head. In a liquid ejection apparatus having a line head (10) arranged by juxtaposing a plurality of (unit) heads (11) of liquid ejection parts so as to connect the head (11) to the adjacent head (11), the liquid ejection apparatus includes ejection direction changing means for enabling the ejection direction of liquid droplets ejected from a nozzle of each liquid ejection part to change in a plurality of directions in the arranging direction of liquid ejection parts and reference direction setting means for individually setting one reference principal direction for each head (11) among a plurality of ejection directions of liquid droplets by the ejection direction changing means. In the (N−1)th and the (N+1)th head 11, the third ejection direction from the left is established as the principal direction while in the Nth head 11, the second ejection direction from the right is established as the principal direction.
Abstract:
A liquid-amount detecting apparatus detects the amount of a liquid in containers. The liquid-amount detecting apparatus includes a liquid detecting circuit and a determining unit. The liquid detecting circuit includes electrode units disposed so as to be in contact with the liquid in the containers, which becomes electrically conductive when in contact with the liquid, an impedance, and an AC-signal source. An AC signal not containing a DC component is input from the AC-signal source to the electrode units through the source impedance, and a signal representing the status of electric connection of the electrode units is output. Furthermore, based on the output signal, a binary signal representing the presence or absence of electrical connection of the electrode units is output. The determining unit determines the presence or absence of the liquid at the electrode units based on the binary signal output from the liquid detecting circuit.
Abstract:
A liquid ejecting head includes a plurality of arrays of liquid ejecting portions each having a nozzle for ejecting a droplet. The nozzle is arranged along each of an imaginary straight line R1 and an imaginary straight line R2 that are arranged in parallel at a distance δ from each other, and a distance, with respect to the direction of the imaginary straight lines R1 and R2, between two adjacent ones of the nozzles respectively arranged on the imaginary straight line R1 and the imaginary straight line R2 is set to a fixed value P. The liquid ejecting portions arrayed along at least one of the imaginary straight lines R1 and R2 are formed so that a liquid is ejected from each of the liquid ejecting portions while being deflected to the other imaginary straight line side.
Abstract:
A flow path structure includes a heating element, a barrier layer, a liquid chamber formed by a part of the barrier layer and a pair of walls confronting each other to hold the heating element therebetween and a first individual flow path and a second individual flow path disposed on both the sides of the liquid chamber to communicate with the liquid chamber, a liquid is supplied to the liquid chamber from at least one of first and second individual flow paths, and the distance U between the walls in the liquid chamber and the flow path width W of the first individual flow path are set to satisfy U>W. With this arrangement, a flow path structure can be provided in which a failure in flow paths due to dusts is unlike to occur and which minimizes the influence of bubbles and has almost no uneven ejection.
Abstract:
A liquid ejection head includes an energy-generating element arranged on a semiconductor substrate, a barrier layer deposited on the semiconductor substrate for forming a liquid chamber in the periphery of the energy-generating element, and a nozzle sheet bonded on the barrier layer and having a nozzle formed at a position opposing the energy-generating element, in which the liquid ejection head ejects liquid contained in the liquid chamber from the nozzle as liquid droplets by the energy-generating element, and the barrier layer is provided with a plurality of depressions, each having an independent contour, arranged within a range, which is separated from the border of the barrier layer, on an adhesive region adhering to the nozzle sheet.
Abstract:
A maintenance method is provided for a discharging head in which multiple discharging portions are arranged in line. The maintenance method includes the steps of performing an operation of continuously discharging droplets from one discharging portion or a plurality of unadjacent discharging portions, and repeating the operation for one discharging portion or a plurality of discharging portions adjacent to the previous discharging portion or the previous discharging portions in a predetermined direction.
Abstract:
A flow path structure includes a heating element, a barrier layer, a liquid chamber formed by a part of the barrier layer and a pair of walls confronting each other to hold the heating element therebetween and a first individual flow path and a second individual flow path disposed on both the sides of the liquid chamber to communicate with the liquid chamber, a liquid is supplied to the liquid chamber from at least one of first and second individual flow paths, and the distance U between the walls in the liquid chamber and the flow path width W of the first individual flow path are set to satisfy U>W. With this arrangement, a flow path structure can be provided in which a failure in flow paths due to dusts is unlike to occur and which minimizes the influence of bubbles and has almost no uneven ejection.
Abstract:
A liquid ejection head including at least one head chip including a plurality of heating elements on a surface of a substrate, a nozzle sheet having nozzles disposed on the respective heating elements, a barrier layer disposed between the head chip and the nozzle sheet, reservoirs disposed between the heating elements and the nozzle sheet, the reservoirs being defined by part of the barrier layer, a common flow path communicating with the reservoirs, and a liquid storage chamber disposed on at least one region of the surface of the substrate excluding a region on which the reservoirs are disposed, the liquid storage chamber being defined by part of the barrier layer and communicating with the common flow path and the reservoirs, the liquid storage chamber storing liquid such that part of the nozzle sheet is in contact with the liquid.
Abstract:
A liquid discharge apparatus having heads with liquid dischargers including nozzles aligned in parallel in a row. Each liquid discharger has a main controlling unit for discharging ink droplets from the nozzles of the liquid discharger, a secondary controlling unit for controlling the discharge of a droplet so that the droplet is discharged along at least one trajectory different from the trajectories of the droplets discharged from a liquid discharger controlled by the main controlling unit, and a secondary-control executing unit for individually setting whether or not the secondary controlling unit for each liquid discharger is operated. The liquid dischargers controlled by the secondary controlling unit discharge ink droplets along different trajectories compared to the ink droplets discharged by other liquid dischargers.
Abstract:
The liquid discharge apparatus includes a head having liquid dischargers capable of deflecting the trajectories of discharged droplets in a plurality of directions. At least two of the liquid dischargers neighboring each other are capable of discharging droplets in the same pixel area. When there is a shut-off liquid discharge due to droplet discharge failure, this information is stored. According to the stored information, the discharge signal corresponding to the droplets the shut-off discharger were supposed to discharge is transferred to another liquid discharger in the vicinity of the shut-off discharger. This other liquid discharger alternatively discharges droplets so that the droplets land in a position the droplets would have had landed if they were discharged by the shut-off discharger.