Abstract:
A major object of the present invention is to provide a volume hologram transfer foil that gives a volume hologram laminate higher in antiforgery function,The present invention achieves the object by providing a volume hologram transfer foil comprising: a substrate, a volume hologram layer carrying a recorded volume hologram that is formed on the substrate, and an image forming layer carrying a formed image and a heat seal layer containing a thermoplastic resin that are formed on the volume hologram layer, and comprising no reflective layer having a function to reflect light.
Abstract:
The present invention provides a security element which is low in cost, is difficult to forge or alter, and can be applied to objects where a high level of security is required. The security element comprises at least a substrate and a fluorescent colorant layer provided on the substrate, wherein the fluorescent colorant layer comprises N species of fluorescent colorants Fn, wherein N is an integer of 2 or more and n is an integer of not less than one and not more than N, in the same layer, and the fluorescent colorant Fn absorbs light with a wavelength of λn and emits fluorescence with a wavelength of λn+1.
Abstract:
The present invention provides a protective layer thermal transfer sheet in which: a protective layer having a thermal transferring property is placed on at least one portion of one of the faces of a substrate sheet and the protective layer is formed by successively laminating at least a peeling layer, a plasticizer resistant layer and a heat adhesive resin layer on the substrate sheet, and in this structure, the heat adhesive resin layer is made from a polyester-urethane resin; and a printed article with the protective layer transferred thereto.
Abstract:
There is provided a printing method that can provide an image formed object which can suppress a change in density of a visible dye image and a lowering in fluorescence intensity and, at the same time, is free from concave/convex of the image surface and has a latent image invisible even under visible light. The printing method comprises a first step of forming a latent image of a fluorescent dye by thermal diffusion transfer; and a second step of providing a visible dye on the latent image by thermal diffusion transfer.
Abstract:
There is provided a printing method that can provide an image formed object which can suppress a change in density of a visible dye image and a lowering in fluorescence intensity and, at the same time, is free from concave/convex of the image surface and has a latent image invisible even under visible light. The printing method comprises a first step of forming a latent image of a fluorescent dye by thermal diffusion transfer; and a second step of providing a visible dye on the latent image by thermal diffusion transfer.
Abstract:
The present invention provides a protective layer thermal transfer sheet in which: a protective layer having a thermal transferring property is placed on at least one portion of one of the faces of a substrate sheet and the protective layer is formed by successively laminating at least a peeling layer, a plasticizer resistant layer and a heat adhesive resin layer on the substrate sheet, and in this structure, the heat adhesive resin layer is made from a polyester-urethane resin; and a printed article with the protective layer transferred thereto.
Abstract:
A major object of the present invention is to provide a volume hologram transfer foil that gives a volume hologram laminate higher in antiforgery function.The present invention achieves the object by providing a volume hologram transfer foil comprising: a substrate, a volume hologram layer carrying a recorded volume hologram that is formed on the substrate, and an image forming layer carrying a formed image and a heat seal layer containing a thermoplastic resin that are formed on the volume hologram layer, and comprising no reflective layer having a function to reflect light.
Abstract:
There is provided a printing method that can provide an image formed object which can suppress a change in density of a visible dye image and a lowering in fluorescence intensity and, at the same time, is free from concave/convex of the image surface and has a latent image invisible even under visible light. The printing method comprises a first step of forming a latent image of a fluorescent dye by thermal diffusion transfer; and a second step of providing a visible dye on the latent image by thermal diffusion transfer.
Abstract:
It is an object of the present invention to provide a thermal transfer sheet provided with a heat resistant slipping layer which reduces dye retransfer, has excellent heat resistance and slip properties, and prevents the defects of printed image from being generated due to wrinkles and the like during printing.A thermal transfer sheet comprising a base film, a color material layer on one surface of the base film, and a heat resistant slipping layer on the other surface of the base film, wherein the heat resistant slipping layer comprises a binder resin containing a cellulose acetate butyrate resin (A1) having a butyryl group content of 50% or more and a lubricant (B), the amount of the binder resin is 65 to 99% by weight of the total solid content of the heat resistant slipping layer, the amount of the cellulose acetate butyrate resin (A1) is 50 to 100% by weight of the binder resin, and the amount of the lubricant (B) is 1 to 30% by weight of the binder resin.
Abstract:
It is an object of the present invention to provide a thermal transfer sheet provided with a heat resistant slipping layer which reduces dye retransfer, has excellent heat resistance and slip properties, and prevents the defects of printed image from being generated due to wrinkles and the like during printing.A thermal transfer sheet comprising a base film, a color material layer on one surface of the base film, and a heat resistant slipping layer on the other surface of the base film, wherein the heat resistant slipping layer comprises a binder resin containing a cellulose acetate butyrate resin (A1) having a butyryl group content of 50% or more and a lubricant (B), the amount of the binder resin is 65 to 99% by weight of the total solid content of the heat resistant slipping layer, the amount of the cellulose acetate butyrate resin (A1) is 50 to 100% by weight of the binder resin, and the amount of the lubricant (B) is 1 to 30% by weight of the binder resin.