Abstract:
A method of producing a primary amine by the hydrogenation of a nitrile in the presence of a hydrogenation catalyst. The hydrogenation catalyst contains at least one metal selected from the group consisting of nickel, cobalt and iron. Before use in the hydrogenation of nitrile, the hydrogenation catalyst is pretreated with at least one treating agent selected from the group consisting of hydrocarbons, alcohols, ethers, esters and carbon monoxide at 150 to 500° C.
Abstract:
A solid xylylenediamine solidified in a container is extremely excellent in storage stability as compared with a liquid xylylenediamine, and is less degraded by discoloration even when stored in an atmosphere containing oxygen. By charging a liquid xylylenediamine into a container, solidifying the liquid xylylenediamine into a solid xylylenediamine in the container under cooling without delay after the charging, and storing the solid xylylenediamine in the container while maintaining the xylylenediamine in a solid state, the xylylenediamine is stored for a long period of time without causing deterioration of quality such as discoloration.
Abstract:
In the method of the present invention, xylylenediamine is produced by a two-stage hydrogenation of a dicyanobenzene compound. In a first stage (a), the hydrogenation is performed until a conversion of nitrile groups reaches 90 mol % or higher and less than 99.9 mol %. In a second stage (b), the hydrogenation is further continued at temperatures 10° C. or more higher than in the step (a) until the conversion of nitrile groups reaches a level which is higher than that attained in the step (a) and equal to 99.5 mol % or more. In the present invention, a highly pure xylylenediamine containing a minimized amount of cyanobenzylamine is efficiently produced in a simple manner without needing a specific purification, and also without deteriorating the use efficiency of the catalyst while reducing the amount of the dicyanobenzene compound remaining not reacted and the generation of the intermediate cyanobenzylamine.
Abstract:
A method of producing a primary amine by the hydrogenation of a nitrile in the presence of a hydrogenation catalyst. The hydrogenation catalyst contains at least one metal selected from the group consisting of nickel, cobalt and iron. Before use in the hydrogenation of nitrile, the hydrogenation catalyst is pretreated with at least one treating agent selected from the group consisting of hydrocarbons, alcohols, ethers, esters and carbon monoxide at 150 to 500° C.
Abstract:
A method of producing xylylenediamine from xylene. In the method, xylene is converted into dicyanobenzene by ammoxidation. The produced dicyanobenzene is extracted into an organic solvent. The extract is then distilled to separate dicyanobenzene from the organic solvent. After added with a solvent, the separated dicyanobenzene is hydrogenated in a liquid phase. Finally, the hydrogenation product is purified by distillation to obtain a highly pure xylylenediamine. The method is conducted in a simple and low energy-consuming process.
Abstract:
A solid xylylenediamine solidified in a container is extremely excellent in storage stability as compared with a liquid xylylenediamine, and is less degraded by discoloration even when stored in an atmosphere containing oxygen. By charging a liquid xylylenediamine into a container, solidifying the liquid xylylenediamine into a solid xylylenediamine in the container under cooling without delay after the charging, and storing the solid xylylenediamine in the container while maintaining the xylylenediamine in a solid state, the xylylenediamine is stored for a long period of time without causing deterioration of quality such as discoloration.
Abstract:
A solid xylylenediamine solidified in a container is extremely excellent in storage stability as compared with a liquid xylylenediamine, and is less degraded by discoloration even when stored in an atmosphere containing oxygen. By charging a liquid xylylenediamine into a container, solidifying the liquid xylylenediamine into a solid xylylenediamine in the container under cooling without delay after the charging, and storing the solid xylylenediamine in the container while maintaining the xylylenediamine in a solid state, the xylylenediamine is stored for a long period of time without causing deterioration of quality such as discoloration.
Abstract:
In a method for separating isophthalonitrile from a gas produced by causing m-xylene to react with ammonia and oxygen-containing gas in the presence of a catalyst, the gas is brought into contact with an organic solvent having a boiling point lower than that of isophthalonitrile; a liquid in which isophthalonitrile is trapped in a trapping step is distilled, to thereby recover isophthalonitrile and the organic solvent from the top of the column and separate at the bottom of the column impurities having boiling points higher than that of isophthalonitrile; and the organic solvent is recovered from the top of the rectification column and liquefied isophthalonitrile of high purity is recovered at the bottom of the column. Thus, loss of isophthalonitrile and plugging of a vacuum-evacuation system caused by isophthalonitrile migrating from a condensation system during distillation under reduced pressure can be prevented, and high-purity isophthalonitrile can be produced at high yield constantly for a long period of time.
Abstract:
A method of producing a primary amine by the hydrogenation of a nitrile in the presence of a hydrogenation catalyst. The hydrogenation catalyst contains at least one metal selected from the group consisting of nickel, cobalt and iron. Before use in the hydrogenation of nitrile, the hydrogenation catalyst is pretreated with at least one treating agent selected from the group consisting of hydrocarbons, alcohols, ethers, esters and carbon monoxide at 150 to 500° C.
Abstract:
A crude liquid containing 1,3-bis(aminomethyl)cyclohexane and a high-boiling component having a boiling point higher than that of 1,3-bis(aminomethyl)cyclohexane is distilled. By controlling the distillation conditions, the high-boiling component is prevented from entering into a distilled 1,3-bis(aminomethyl)cyclohexane and the content of a low-boiling component in the distilled 1,3-bis(aminomethyl)cyclohexane is minimized.