Abstract:
A drive battery assembly of an electric, fuel cell or hybrid vehicle has a plurality of battery cells (10), which are outwardly closed by their own individual cell housings (12) and are combined into a cell stack. At least one cooling fin (16) planarly abutting the cell housings (12) removes heat by way of coolant. Canals (28) for coolant are formed by the walls of the two-walled cooling fins (16) being distanced in sections.
Abstract:
The invention relates to a neutron detector for detection of neutrons in fields with significant γ- or β-radiation, comprising a neutron sensitive scintillator crystal, providing a neutron capture signal being larger than the capture signal of 3 MeV γ-radiation, a semiconductor based photo detector being optically coupled to the scintillator crystal, where the scintillator crystal and the semiconductor based photo detector are selected so that the total charge collection time for scintillator signals in the semiconductor based photo detector is larger than the total charge collection time for signals generated by direct detection of ionizing radiation in the semiconductor based photo detector, the neutron detector further comprising a device for sampling the detector signals, a digital signal processing device, means which distinguish direct signals from the semiconductor based photo detector, caused by γ- or β-radiation and being at least partially absorbed in the semiconductor based photo detector, from light signals entering the semiconductor based photo detector, after being emitted from the scintillator crystal after capturing at least one neutron, by means of pulse shape discrimination, utilizing a difference between the total charge collection time for scintillator signals from the total charge collection time for signals generated by direct detection of ionizing radiation in the semiconductor based photo detector, and means which distinguish neutron induced signals from γ-radiation induced signals in the scintillator crystal by discriminating the different signals via their pulse height, making use of the difference between the number of photons generated by neutron and γ-radiation in the field of interest.
Abstract:
An electrical circuitry has a base element, a printed circuit board and a fastening apparatus for fastening the printed circuit board to the base element. The fastening apparatus retains the printed circuit board by virtue of the base element being present on a top side and underside of the printed circuit board. In this case, the base element acts upon the top side and underside of the printed circuit board at application points which are opposite one another at an offset with respect to one another while elastically deforming the printed circuit board.
Abstract:
A device and a method for bidirectional single-wire data transmission of data information between an electronic control unit and at least one peripheral unit. A predefined constant voltage and/or a predefined constant current is applied to a driver device of the electronic control unit to produce voltage-coded and/or current-coded information. The voltage-coded and/or current-coded information is transmitted from the driver device of the electronic control unit to a driver device 30 of the peripheral unit via a single-wire line. At least the driver logic of the driver device and/or the communication logic of the peripheral unit are triggered and powered through the current flow. Information occurring on the peripheral unit is current-coded and/or voltage coded due to the triggering thereof. The current-coded and/or voltage-coded information are uploaded from the driver device of the peripheral unit to the driver device of the electronic control unit during the triggering of the peripheral unit via the same single-wire line.
Abstract:
A device and a method are described for bidirectional single-wire data transmission of information between a control unit and at least one peripheral unit, having the following steps: generating a first current flow from the control unit to the peripheral unit during first time slots via a single-wire line to transmit voltage-coded or current-coded information from the control unit to the peripheral unit; and/or generating a second current flow from the peripheral unit to the control unit during second time slots via the single-wire line to upload voltage-coded or current-coded information from the peripheral unit to the control unit; the first and second time slots being implemented so they do not mutually overlap; and/or generating, in the first and/or second time slots, additional information to be transmitted and/or uploaded, which is transmitted as digital or analog signals by modulating the current or the voltage of the single-wire line and is analyzed in the control unit or the peripheral unit.
Abstract:
Method for correction of the temperature dependency of a light quantity L emitted by a light emitting diode (LED), being operated in pulsed mode with substantially constant pulse duration tP, and measured in a light detector, using a predetermined parameter X, correlated to the temperature T of the LED in a predetermined ratio, whereby a correction factor K is determined from the parameter X, preferably using a calibration table, especially preferred using an analytic predetermined function, whereby the measured emitted light quantity L is corrected for the temperature contingent fluctuations of the emitted light quantity, whereby the parameter X is determined from at least two output signals of the LED, which are related to each other in a predetermined manner.
Abstract translation:用于校正由发光二极管(LED)发射的光量L的温度依赖性的方法,其以脉冲模式以基本上恒定的脉冲持续时间t P P运行,并且在光检测器中测量,使用 预定参数X,以预定比例与LED的温度T相关,由此,优选使用校准表,从参数X确定校正因子K,特别优选使用分析预定功能,由此测量的发射光量 根据发射光量的温度偶然波动来校正L,由此根据预定方式彼此相关的LED的至少两个输出信号来确定参数X.
Abstract:
A fuel injector for the direct injection of fuel into the combustion chamber of an internal combustion engine includes a valve needle situated in a nozzle body, the valve needle being actuable by an actuator and acted upon by a restoring spring in such a manner that a valve-closure member which is in operative connection to the valve needle and faces the combustion chamber is kept in sealing contact with a valve-seat surface in the non-actuated state of the actuator. A first jet-opening angle α1 is assigned to a first lift state of the valve needle and a second jet-opening angle α2 to a second lift state of the valve needle.
Abstract:
A fuel injector (1), in particular a fuel injector (1) for fuel injection systems, includes a first solenoid (2) cooperating with an armature (3), a second solenoid (4) cooperating with the armature (3), and a valve needle (13) friction-locked to the armature (3) for actuating a valve closing body, a force being exertable on the armature (3) in a closing direction using the first solenoid (2) and in an opening direction using the second solenoid (4).
Abstract:
A fuel injector for fuel injection systems in internal combustion engines, including an actuator, a valve needle operable by the actuator for operating a valve-closure member, which, together with a valve-seat surface forms a sealing seat and a swirl device including at least one swirl channel, through which fuel flows with a tangential component relative to a longitudinal axis of the fuel injector. The axial position of a plunger element determines a cross-section of at least one bypass channel that bypasses the at least one swirl channel without a tangential component.
Abstract:
Method and device for separating a fine-grained solid material into a fines fraction and a coarse fraction at a cut point size of below 50 .mu.m, preferably below approx. 10 .mu.m. The fine-grained solid is dispersed in a liquid capable of forming drops and this dispersion is forced into a defined sink flow with a superimposed rotational flow that is generated independently from the jink flow. The relationship between the two rates, namely the sink flow rate and the rotational flow rate, is dictated by the cut point size. The device includes a deflector wheel which has a direction of flow from the outside to the inside, and vanes are fitted in the wheel parallel to its rotational axis to form flow channels, whereby the feed dispersion is charged to the deflector wheel at its outer periphery.