摘要:
Lead-contaminated soil and battery casings are remediated using a plasma arc furnace which pyrolyzes the soil and waste battery casings so as to form a vitrified slag and a combustible gas, respectively. The combustible gas along with volatilized lead (and other heavy metals which may be present) are transferred to, and used as a primary fuel by, a conventional smelting furnace. The volatilized lead that is entrained in the combustible gas is thus transferred to the recovery and environmental protection/control equipment associated with the smelting furnace or other conversion system. The soil, on the other hand, is converted into a non-toxic (i.e., according to the Toxicity Characteristic Leaching Procedure) vitrified slag by the plasma arc which may be crushed and used as a commercial material (e.g., roadway aggregate, asphalt filler material and the like) or simply transferred to a landfill where it poses no environmental threat.
摘要:
Lead-contaminated soil and battery casings are remediated using a plasma arc furnace which pyrolyzes the soil and waste battery casings so as to form a vitrified slag and a combustible gas, respectively. The combustible gas along with volatilized lead (and other heavy metals which may be present) are transferred to, and used as a primary fuel by, a conventional smelting furnace. The volatilized lead that is entrained in the combustible gas is thus transferred to the recovery and environmental protection/control equipment associated with the smelting furnace. The soil, on the other hand, is convened into a non-toxic (i.e., according to the Toxicity Characteristic Leaching Procedure) vitrified slag by the plasma arc which may be crushed and used as a commercial material (e.g., roadway aggregate, asphalt filler material and the like) or simply transferred to a landfill where it poses no environmental threat.
摘要:
Heavy metals substantially free from heavy metal chloride contaminants are recovered from electric arc furnace (EAF) dust by bringing the dust into contact with a carbonaceous reductant utilizing a plasma arc of a DC sealed atmosphere plasma arc furnace so as to volatilize (vaporize) the hazardous heavy metals therein, and then bringing the vaporized heavy metals into contact with an alkali metal gettering agent to thereby form alkali metal chlorides and thereby substantially inhibit the formation of heavy metal chlorides in the off-gas.
摘要:
Chemical agents, such as chemical munitions, are decomposed by bringing them into contact with a plasma arc of a DC plasma arc furnace operated at a temperature of greater than about 30,000.degree. F.
摘要:
A mobile system for the remediation of a mixture of lead-contaminated soil and waste lead-acid battery casings includes a plasma arc furnace unit having a plasma arc torch which operates at a sufficiently elevated temperature to (i) convert the battery casings in the mixture into a combustible gas, (ii) volatilize lead contaminants which are present in the mixture and entrain the volatilized lead contaminants as a vapor in the combustible gas, and (iii) vitrify the soil, whereby lead contaminants that were present in the mixture are substantially removed therefrom. An internal combustion engine-driven generator supplies the plasma arc furnace with electrical power. In this regard, the internal combustion engine-driven generator receives the combustible gas from the plasma arc furnace as a fuel source in order to drive the generator. A lead-filtration unit is preferably interposed between the generator and the plasma arc furnace so as to receive the combustible gas generated by the plasma arc furnace and remove the entrained lead contaminants therefrom. A supply of secondary fuel gas (e.g., liquified petroleum gas, natural gas or the like) may optionally be supplied to the internal combustion engine-driven generator as a supplemental fuel together with the combustible gas generated by the plasma arc furnace. The various nit operations may be mounted for mobility (e.g., on truck beds, rail cars or the like) to permit transportation to a landfill in need of remediation.
摘要:
Lead-contaminated soil and battery casings are remediated using a plasma arc furnace which pyrolyzes the soil and waste battery casings so as to form a vitrified slag and a combustible gas, respectively. The combustible gas along with volatilized lead (and other heavy metals which may be present) are transferred to, and used as a primary fuel by, a conventional smelting furnace. The volatilized lead that is entrained in the combustible gas is thus transferred to the recovery and environmental protection/control equipment associated with the smelting furnace. The soil, on the other hand, is converted into a non-toxic (i.e., according to the Toxicity Characteristic Leaching Procedure) vitrified slag by the plasma arc which may be crushed and used as a commercial material (e.g., roadway aggregate, asphalt filler material and the like) or simply transferred to a landfill where it poses no environmental threat.
摘要:
Lead-contaminated soil and battery casings are remediated using a plasma arc furnace which pyrolyzes the soil and waste battery casings so as to form a vitrified slag and a combustible gas, respectively. The combustible gas along with volatilized lead (and other heavy metals which may be present) are transferred to, and used as a primary fuel by, a conventional smelting furnace. The volatilized lead that is entrained in the combustible gas is thus transferred to the recovery and environmental protection/control equipment associated with the smelting furnace. The soil, on the other hand, is converted into a non-toxic (i.e., according to the Toxicity Characteristic Leaching Procedure) vitrified slag by the plasma arc which may be crushed and used as a commercial material (e.g., roadway aggregate, asphalt filler material and the like) or simply transferred to a landfill where it poses no environmental threat.