Abstract:
A method and apparatus for use with a non-frangible object detection mechanism on an agricultural harvester, the detection mechanism including a sensing surface and a sensor for sensing force applied to the sensing surface that is associated with a foreign object adjacent the sensing surface, the harvester including a transport surface along which harvested materials are transported toward the sensing surface, the apparatus including at least first and second ramp members positioned between the transport surface and the sensing surface, the ramp members separated by a gap, each ramp member including a front ramp surface that extends between a front ramp end adjacent the transport surface and a ramp member apex, the ramp member apexes positioned at a location higher than the sensing surface and proximate the sensing surface, wherein, as harvested material and non-frangible objects are conveyed along the transport surface and toward the sensing surface, at least a portion of the harvested material passes between the ramp members to the sensing surface and at least a portion of the non-frangible objects move along the ramp surfaces and are forced over the ramp apexes to descend toward the sensing surface.
Abstract:
An unloader control for an unloader conveyor and grain tank conveyor of an agricultural combine, which, when an unload command is received, will automatically initiate operation of the unloader conveyor to commence conveying grain in an inlet end thereof toward the outlet end thereof so as to allow smooth transition of grain from the grain tank conveyor to the inlet end of the unloader conveyor, then automatically initiate operation of the grain tank conveyor for moving grain into the inlet end of the unloader conveyor, and, when a clean out command is received during operation of the unloader conveyor and the grain tank conveyor, will automatically cease operation of the grain tank conveyor, then, after a sufficient time period for the unloader conveyor to convey substantially all of any grain therein through the outlet end, automatically cease operation of the unloader conveyor.
Abstract:
An improvement to the feederhouse on an agricultural combine. The invention includes a stone detection and ejection system on the feederhouse of an agricultural combine and an acoustic array positioned beneath the front drum and having an acoustic sensor and sounding plate. The sounding plate is generally parallel to the feederhouse floor and includes interruptions configured upon its surface to ensure that a stone or other hard object, sliding over its surface, or a flow of crop material carrying a stone, excites the plate to a sufficient magnitude detectable by an acoustic sensor.
Abstract:
A hard object or stone detection method and apparatus for detecting and removing discrete hard foreign objects from mobile agricultural equipment, particularly an agricultural harvester including apparatus for providing a flow of cut crop material to an elevator for delivery to a threshing system. The apparatus includes a foreign object detecting mechanism, including a foreign object detecting circuit for detecting foreign objects and an object exclusion or rejection mechanism operationally connected to be activated by the detecting circuit. The detecting circuit includes at least one vibration sensor operable for outputting a signal, and a combination of high pass filters and frequency bandpass filters and variable threshold comparators for processing the signal along first and second signal paths, and at least one microprocessor or microcontroller including a pulse rejection network. The microprocessor can be electronically connected to control the threshold comparators and programmable amplifiers, and activates the object exclusion or rejection mechanism when the pulse rejection network generates an internal signal indicating presence of a hard object.
Abstract:
An unloader control for an unloader conveyor and grain tank conveyor of an agricultural combine, which, when an unload command is received, will automatically initiate operation of the unloader conveyor to commence conveying grain in an inlet end thereof toward the outlet end thereof so as to allow smooth transition of grain from the grain tank conveyer to the inlet end of the unloader conveyor, then automatically initiate operation of the grain tank conveyor for moving grain into the inlet end of the unloader conveyor, and, when a clean out command is received during operation of the unloader conveyor and the grain tank conveyor, will automatically cease operation of the grain tank conveyor, then, after a sufficient time period for the unloader conveyor to convey substantially all of any grain therein through the outlet end, automatically cease operation of the unloader conveyor.