Abstract:
A method, computer program product and hard disk drive for restricting a rate of spin-up/spin-down cycles for a spindle motor in a hard disk drive. The firmware in the hard disk drive determines a maximum rate of spin-up/spin-down cycles the spindle motor is designed to handle over a designated period of time based on the number of spin-up/spin-down cycles the spindle motor is designed to handle over its expected lifetime. The firmware disables the automatic standby mode of operation if a calculated rate of spin-up/spin-down cycles during the designated period of time is greater than the maximum rate of spin-up/spin-down cycles the spindle motor is designed to handle over the designated period of time. By disabling the automatic standby mode of operation, the rate of spin-up/spin-down cycles will be reduced as the spindle motor will not incur a spin-up/spin-down cycle until the automatic standby mode of operation is enabled.
Abstract:
A "hot-pluggable" hard disk drive is mounted in a removable hard disk drive tray. The hard disk drive tray has a vibration dampening system for reducing vibration between the hard disk drive, the hard disk drive tray, and a hard disk drive docking bay located within a computer system. The vibration dampening system has three primary components. The first component is a strip of polymeric material located between an end of the hard disk drive tray and the docking bay. The second component of the vibration dampening system is a set of polymeric strips located between an inner surface of the tray and the hard disk drive. The third component of the vibration dampening system is a set of spring assemblies. Each spring assembly is located between the sides of the tray and the docking bay.
Abstract:
A “hot-pluggable” hard disk drive is mounted in a removable hard disk drive tray. The hard disk drive tray has a vibration dampening system for reducing vibration between the hard disk drive, the hard disk drive tray, and a hard disk drive docking bay located within a computer system. The vibration dampening system has three primary components. The first component is a strip of polymeric material located between an end of the hard disk drive tray and the docking bay. The second component of the vibration dampening system is a set of polymeric strips located between an inner surface of the tray and the hard disk drive. The third component of the vibration dampening system is a set of spring assemblies. Each spring assembly is located between the sides of the tray and the docking bay.
Abstract:
Reducing current draw of solid state drives from a shared power supply of a computer at computer startup, each SSD including computer memory, a capacitor, a disk controller, and a charge controller, the disk controller configured to enable the charge controller to charge the capacitor upon receiving a charge command, the SSDs organized into startup groups characterized by a position in a predefined startup order. Upon startup of the computer, beginning with a first startup group in the predefined startup order and until the last startup group in the predefined startup order has received a charge command, embodiments include, sending, by a storage device initiator, a charge command to a startup group to initiate charging of the capacitor of each solid state drive in the startup group and waiting a predefined period of time before sending another charge command to a next startup group in the predefined startup order.
Abstract:
Reducing current draw of solid state drives from a shared power supply of a computer at computer startup, each SSD including computer memory, a capacitor, a disk controller, and a charge controller, the disk controller configured to enable the charge controller to charge the capacitor upon receiving a charge command, the SSDs organized into startup groups characterized by a position in a predefined startup order. Upon startup of the computer, beginning with a first startup group in the predefined startup order and until the last startup group in the predefined startup order has received a charge command, embodiments include, sending, by a storage device initiator, a charge command to a startup group to initiate charging of the capacitor of each solid state drive in the startup group and waiting a predefined period of time before sending another charge command to a next startup group in the predefined startup order.
Abstract:
An intelligent removable information storage device (100), for coupling to a host microcomputer system (10), includes a local processor unit (106) including apparatus for preventing the microcomputer system from reading from, or writing to, the storage device absent the entry of an appropriate password by a user of the host microcomputer system. The storage device also includes a storage medium (e.g., a magnetic disk) for storing information including at least one password. The local processor unit includes apparatus for preventing access to the information stored in the storage means absent receipt of a valid password.
Abstract:
Reducing current draw of solid state drives from a shared power supply of a computer at computer startup, each SSD including computer memory, a capacitor, a disk controller, and a charge controller, the disk controller configured to enable the charge controller to charge the capacitor upon receiving a charge command, the SSDs organized into startup groups characterized by a position in a predefined startup order. Upon startup of the computer, beginning with a first startup group in the predefined startup order and until the last startup group in the predefined startup order has received a charge command, embodiments include, sending, by a storage device initiator, a charge command to a startup group to initiate charging of the capacitor of each solid state drive in the startup group and waiting a predefined period of time before sending another charge command to a next startup group in the predefined startup order.
Abstract:
Reducing current draw of solid state drives from a shared power supply of a computer at computer startup, each SSD including computer memory, a capacitor, a disk controller, and a charge controller, the disk controller configured to enable the charge controller to charge the capacitor upon receiving a charge command, the SSDs organized into startup groups characterized by a position in a predefined startup order. Upon startup of the computer, beginning with a first startup group in the predefined startup order and until the last startup group in the predefined startup order has received a charge command, embodiments include, sending, by a storage device initiator, a charge command to a startup group to initiate charging of the capacitor of each solid state drive in the startup group and waiting a predefined period of time before sending another charge command to a next startup group in the predefined startup order.
Abstract:
A method, computer program product and hard disk drive for restricting a rate of spin-up/spin-down cycles for a spindle motor in a hard disk drive. The firmware in the hard disk drive determines a maximum rate of spin-up/spin-down cycles the spindle motor is designed to handle over a designated period of time based on the number of spin-up/spin-down cycles the spindle motor is designed to handle over its expected lifetime. The firmware disables the automatic standby mode of operation if a calculated rate of spin-up/spin-down cycles during the designated period of time is greater than the maximum rate of spin-up/spin-down cycles the spindle motor is designed to handle over the designated period of time. By disabling the automatic standby mode of operation, the rate of spin-up/spin-down cycles will be reduced as the spindle motor will not incur a spin-up/spin-down cycle until the automatic standby mode of operation is enabled.