Abstract:
A negative lower gasket has a rib disposed along the outer periphery of a flat portion having a base of a negative current collector disposed thereat. The height of the rib is set to be more than a thickness of the negative lower gasket. The rib may be disposed only at a portion corresponding to a position where legs project from the base of the negative current collector at the outer periphery of the flat portion.
Abstract:
A battery includes current collectors for electrically connecting a power generating element contained inside of a battery case to external terminals, respectively. A caulking head of a rivet for fixing the negative current collector to a cover is contained in a engagement recess which is a space inside of a engagement receiving portion in the cover. The positive current collector is caulked to the cover via a shaft of the positive external terminal. A caulking head at a tip end of the shaft is contained in the engagement recess which is a space defined inside of the engagement receiving portion. The caulking heads do not project from a lower surface of the cover, and therefore, a clearance space defined between the power generating element and the cover is set to the minimum.
Abstract:
According to one embodiment, an ink-jet head includes a piezoelectric member which forms an ink pressure chamber, an electrode disposed on a side surface of the piezoelectric member, a nozzle plate attached to the piezoelectric member and including a nozzle hole communicating with the ink pressure chamber, a surface of the nozzle plate including a top surface of the nozzle plate, and a protection film which covers the surface of the nozzle plate, a peripheral portion of an adhesion part between the piezoelectric member and the nozzle plate, and the electrode. A recess is formed in a part of the protection film covering the top surface of the nozzle plate. The part of the protection film corresponds to a peripheral area of the nozzle hole.
Abstract:
The metal foil of the positive electrode 1a or the negative electrode 1b in the power generating element 1 is connected along the connecting plate portion 2b which is folded, twisted, and provided in a protruding condition from the main portion 2a of the current-collector connector 2; hence the shape of the current-collector connector 2 becomes easy to form, and a battery capable of enhancing current collection efficiency, reliability and workability can be provided.
Abstract:
A floor spacer for a vehicle constituted of an expanded resin molded article which can simultaneously satisfy sound absorbing performance while satisfying desired compression strength and reduction in weight is provided. A floor spacer A for a vehicle is constituted of a floor spacer main body 10 constituted of an expanded resin molded article having flat plate portions 12a and 12b to be on an inner side of a compartment, and a plurality of ridges 13a and 13b vertically provided at back surfaces of the flat plate portions 12a and 12b on a floor frame side, and a layer constituted of a sound absorbing material 20 formed to fill spaces 14a and 14b formed between the aforesaid ridges 13a and 13b. Through-holes 15 may be formed in the flat plate portions 12a and 12b of the floor spacer main body 10, and fastening holes 16 which a part of the sound absorbing material 20 enters may be formed in the ridges 13a and 13b.
Abstract:
A floor spacer for a vehicle constituted of an expanded resin molded article which can simultaneously satisfy sound absorbing performance while satisfying desired compression strength and reduction in weight is provided. A floor spacer A for a vehicle is constituted of a floor spacer main body 10 constituted of an expanded resin molded article having flat plate portions 12a and 12b to be on an inner side of a compartment, and a plurality of ridges 13a and 13b vertically provided at back surfaces of the flat plate portions 12a and 12b on a floor frame side, and a layer constituted of a sound absorbing material 20 formed to fill spaces 14a and 14b formed between the aforesaid ridges 13a and 13b. Through-holes 15 may be formed in the flat plate portions 12a and 12b of the floor spacer main body 10, and fastening holes 16 which a part of the sound absorbing material 20 enters may be formed in the ridges 13a and 13b.
Abstract:
“Energy per unit volume” P2(Pa) generated in ink 4 in a second ink tank 14 is maintained to the condition “P2={(1+r)×Pn}−(r×P1)” based on “energy per unit volume” P1(Pa) generated in ink 4 in the first ink tank 12, a proportion of “1:r” between channel resistance R1 (Pa·sec/m3) of ink from the first ink tank 12 to the neighborhood of a nozzle 1 and channel resistance R2 (Pa·sec/m3) of ink from the neighborhood of the nozzle 1 to the second ink tank 14, and appropriate pressure Pn (Pa) of the ink 4 in the neighborhood of the nozzle 1.
Abstract:
A battery pack includes a secondary battery including a plurality of cell blocks, a measuring section, a charge and discharge control switch, a protection circuit, and a memory. The measuring section detects a voltage, a current, and an internal resistance, of the secondary battery. The controller monitors the voltage and the current of the secondary battery and outputs a request signal indicative of a charge condition to charge the secondary battery in accordance with the charge condition which is set. The protection circuit monitors voltages of the plurality of cell blocks. The memory registers an initial internal resistance of the secondary battery. The controller calculates a deterioration coefficient by a ratio of the internal resistance detected by the measuring section to the initial internal resistance registered in the memory, and changes the charge condition in accordance with the deterioration coefficient.
Abstract:
A flow sensor readily obtains high sensitivity without errors due to tilting. The flow sensor includes a flow channel having a pair of parallel portions and temperature sensing resistors for heating a fluid to a preset temperature. The temperature sensing resistors are disposed on parts of the parallel portions of the flow channel, to detect a fluid flow rate based on a change in temperature distribution of a flow channel due to a change in flow rate of the fluid flowing through the flow channel. The temperature sensing resistors include a first upstream temperature sensing resistor and a first downstream temperature sensing resistor that are disposed in a line on upstream and downstream sides of one of the parallel portions, respectively; and a second upstream temperature sensing resistor and a second downstream temperature sensing resistor that are disposed in a line on upstream and downstream sides of the other parallel portion, respectively.
Abstract:
An ink jet recording apparatus according to an embodiment of the invention includes an ink jet head having a pressure chamber facing a nozzle, and an upstream port and a downstream port connected to the pressure chamber, a main tank connected to the ink jet head via the upstream port and capable of storing ink therein, and a sub-tank connected to the ink jet head via the downstream port and capable of storing ink, wherein at least when printing by ejecting ink from the nozzle, the relation between ph, r, R and Q is held to satisfy ph−{QR×(1/(1+r))}=Pn (Pn being a constant representing a proper pressure in the nozzle), where ph represents a potential pressure in the main tank as viewed from a surface of an orifice plate where the nozzle of the ink jet head is formed, R represents a total flow path resistance from the main tank to the sub-tank via the ink jet head, a ratio of a flow path resistance from the main tank to the nozzle and a flow path resistance from the nozzle to the sub-tank is expressed by 1:r, and Q represents a flow rate of ink that circulates in a circulation path formed by connecting the ink jet head, the main tank and the sub-tank.