Abstract:
A method for selectively etching a high-k dielectric layer with respect to a polysilicon material is provided. The high-k dielectric layer is partially removed by Ar sputtering, and then the high-k dielectric layer is etched using an etching gas comprising BCl3. The high-k dielectric layer and the polysilicon material may be formed on a substrate. In order to partially remove the high-k dielectric layer, a sputtering gas containing Ar is provided into an etch chamber in which the substrate is placed, a plasma is generated from the sputtering gas, and then the sputtering gas is stopped. In order to etch the high-k dielectric layer, the etching gas is provided into the etch chamber, a plasma is generated from the etching gas, and then the etching gas is stopped.
Abstract:
Fin FET semiconductor devices are provided which include a substrate, an active pattern that protrudes vertically from the substrate and that extends laterally in a first direction, a device isolation layer which has a top surface that is lower than a top surface of the active pattern, a gate structure on the substrate that extends laterally in a second direction to cover a portion of the active pattern and a conductive layer that is on at least portions of side surfaces of the active pattern that are adjacent a side portion of the gate structure. The conductive layer may comprise a semiconductor layer, and the semiconductor layer may be in electrical contact with a contact pad. In other embodiments, the conductive layer may comprise a contact pad.
Abstract:
A method for selectively etching a high-k dielectric layer with respect to a polysilicon material is provided. The high-k dielectric layer is partially removed by Ar sputtering, and then the high-k dielectric layer is etched using an etching gas comprising BCl3. The high-k dielectric layer and the polysilicon material may be formed on a substrate. In order to partially remove the high-k dielectric layer, a sputtering gas containing Ar is provided into an etch chamber in which the substrate is placed, a plasma is generated from the sputtering gas, and then the sputtering gas is stopped. In order to etch the high-k dielectric layer, the etching gas is provided into the etch chamber, a plasma is generated from the etching gas, and then the etching gas is stopped.
Abstract:
Fin FET semiconductor devices are provided which include a substrate, an active pattern that protrudes vertically from the substrate and that extends laterally in a first direction, a device isolation layer which has a top surface that is lower than a top surface of the active pattern, a gate structure on the substrate that extends laterally in a second direction to cover a portion of the active pattern and a conductive layer that is on at least portions of side surfaces of the active pattern that are adjacent a side portion of the gate structure. The conductive layer may comprise a semiconductor layer, and the semiconductor layer may be in electrical contact with a contact pad. In other embodiments, the conductive layer may comprise a contact pad.
Abstract:
A method for forming a wire line by a damascene process includes forming a first insulating layer on a semiconductor substrate, etching the first insulating layer to form a contact hole, and forming a first conductive layer over the first insulating layer that fills the contact hole. The first conductive layer is patterned, and a storage node contact is formed that fills the contact hole and is electrically connected to the semiconductor substrate. A hard mask is formed over the storage node contact and the first insulating layer is etched using the hard mask as an etch mask to form a trench in the first insulating layer. A bit line is formed in the trench that is electrically connected to the semiconductor substrate. A second insulating layer is formed that covers the bit line. The second insulating layer and the hard mask are planarized and a storage node of a capacitor is formed on the storage node contact.